Sort by:
Page 17 of 2922917 results

4KAgent: Agentic Any Image to 4K Super-Resolution

Yushen Zuo, Qi Zheng, Mingyang Wu, Xinrui Jiang, Renjie Li, Jian Wang, Yide Zhang, Gengchen Mai, Lihong V. Wang, James Zou, Xiaoyu Wang, Ming-Hsuan Yang, Zhengzhong Tu

arxiv logopreprintJul 9 2025
We present 4KAgent, a unified agentic super-resolution generalist system designed to universally upscale any image to 4K resolution (and even higher, if applied iteratively). Our system can transform images from extremely low resolutions with severe degradations, for example, highly distorted inputs at 256x256, into crystal-clear, photorealistic 4K outputs. 4KAgent comprises three core components: (1) Profiling, a module that customizes the 4KAgent pipeline based on bespoke use cases; (2) A Perception Agent, which leverages vision-language models alongside image quality assessment experts to analyze the input image and make a tailored restoration plan; and (3) A Restoration Agent, which executes the plan, following a recursive execution-reflection paradigm, guided by a quality-driven mixture-of-expert policy to select the optimal output for each step. Additionally, 4KAgent embeds a specialized face restoration pipeline, significantly enhancing facial details in portrait and selfie photos. We rigorously evaluate our 4KAgent across 11 distinct task categories encompassing a total of 26 diverse benchmarks, setting new state-of-the-art on a broad spectrum of imaging domains. Our evaluations cover natural images, portrait photos, AI-generated content, satellite imagery, fluorescence microscopy, and medical imaging like fundoscopy, ultrasound, and X-ray, demonstrating superior performance in terms of both perceptual (e.g., NIQE, MUSIQ) and fidelity (e.g., PSNR) metrics. By establishing a novel agentic paradigm for low-level vision tasks, we aim to catalyze broader interest and innovation within vision-centric autonomous agents across diverse research communities. We will release all the code, models, and results at: https://4kagent.github.io.

Cross-Modality Masked Learning for Survival Prediction in ICI Treated NSCLC Patients

Qilong Xing, Zikai Song, Bingxin Gong, Lian Yang, Junqing Yu, Wei Yang

arxiv logopreprintJul 9 2025
Accurate prognosis of non-small cell lung cancer (NSCLC) patients undergoing immunotherapy is essential for personalized treatment planning, enabling informed patient decisions, and improving both treatment outcomes and quality of life. However, the lack of large, relevant datasets and effective multi-modal feature fusion strategies pose significant challenges in this domain. To address these challenges, we present a large-scale dataset and introduce a novel framework for multi-modal feature fusion aimed at enhancing the accuracy of survival prediction. The dataset comprises 3D CT images and corresponding clinical records from NSCLC patients treated with immune checkpoint inhibitors (ICI), along with progression-free survival (PFS) and overall survival (OS) data. We further propose a cross-modality masked learning approach for medical feature fusion, consisting of two distinct branches, each tailored to its respective modality: a Slice-Depth Transformer for extracting 3D features from CT images and a graph-based Transformer for learning node features and relationships among clinical variables in tabular data. The fusion process is guided by a masked modality learning strategy, wherein the model utilizes the intact modality to reconstruct missing components. This mechanism improves the integration of modality-specific features, fostering more effective inter-modality relationships and feature interactions. Our approach demonstrates superior performance in multi-modal integration for NSCLC survival prediction, surpassing existing methods and setting a new benchmark for prognostic models in this context.

SimCortex: Collision-free Simultaneous Cortical Surfaces Reconstruction

Kaveh Moradkhani, R Jarrett Rushmore, Sylvain Bouix

arxiv logopreprintJul 9 2025
Accurate cortical surface reconstruction from magnetic resonance imaging (MRI) data is crucial for reliable neuroanatomical analyses. Current methods have to contend with complex cortical geometries, strict topological requirements, and often produce surfaces with overlaps, self-intersections, and topological defects. To overcome these shortcomings, we introduce SimCortex, a deep learning framework that simultaneously reconstructs all brain surfaces (left/right white-matter and pial) from T1-weighted(T1w) MRI volumes while preserving topological properties. Our method first segments the T1w image into a nine-class tissue label map. From these segmentations, we generate subject-specific, collision-free initial surface meshes. These surfaces serve as precise initializations for subsequent multiscale diffeomorphic deformations. Employing stationary velocity fields (SVFs) integrated via scaling-and-squaring, our approach ensures smooth, topology-preserving transformations with significantly reduced surface collisions and self-intersections. Evaluations on standard datasets demonstrate that SimCortex dramatically reduces surface overlaps and self-intersections, surpassing current methods while maintaining state-of-the-art geometric accuracy.

Deep Brain Net: An Optimized Deep Learning Model for Brain tumor Detection in MRI Images Using EfficientNetB0 and ResNet50 with Transfer Learning

Daniel Onah, Ravish Desai

arxiv logopreprintJul 9 2025
In recent years, deep learning has shown great promise in the automated detection and classification of brain tumors from MRI images. However, achieving high accuracy and computational efficiency remains a challenge. In this research, we propose Deep Brain Net, a novel deep learning system designed to optimize performance in the detection of brain tumors. The model integrates the strengths of two advanced neural network architectures which are EfficientNetB0 and ResNet50, combined with transfer learning to improve generalization and reduce training time. The EfficientNetB0 architecture enhances model efficiency by utilizing mobile inverted bottleneck blocks, which incorporate depth wise separable convolutions. This design significantly reduces the number of parameters and computational cost while preserving the ability of models to learn complex feature representations. The ResNet50 architecture, pre trained on large scale datasets like ImageNet, is fine tuned for brain tumor classification. Its use of residual connections allows for training deeper networks by mitigating the vanishing gradient problem and avoiding performance degradation. The integration of these components ensures that the proposed system is both computationally efficient and highly accurate. Extensive experiments performed on publicly available MRI datasets demonstrate that Deep Brain Net consistently outperforms existing state of the art methods in terms of classification accuracy, precision, recall, and computational efficiency. The result is an accuracy of 88 percent, a weighted F1 score of 88.75 percent, and a macro AUC ROC score of 98.17 percent which demonstrates the robustness and clinical potential of Deep Brain Net in assisting radiologists with brain tumor diagnosis.

MCA-RG: Enhancing LLMs with Medical Concept Alignment for Radiology Report Generation

Qilong Xing, Zikai Song, Youjia Zhang, Na Feng, Junqing Yu, Wei Yang

arxiv logopreprintJul 9 2025
Despite significant advancements in adapting Large Language Models (LLMs) for radiology report generation (RRG), clinical adoption remains challenging due to difficulties in accurately mapping pathological and anatomical features to their corresponding text descriptions. Additionally, semantic agnostic feature extraction further hampers the generation of accurate diagnostic reports. To address these challenges, we introduce Medical Concept Aligned Radiology Report Generation (MCA-RG), a knowledge-driven framework that explicitly aligns visual features with distinct medical concepts to enhance the report generation process. MCA-RG utilizes two curated concept banks: a pathology bank containing lesion-related knowledge, and an anatomy bank with anatomical descriptions. The visual features are aligned with these medical concepts and undergo tailored enhancement. We further propose an anatomy-based contrastive learning procedure to improve the generalization of anatomical features, coupled with a matching loss for pathological features to prioritize clinically relevant regions. Additionally, a feature gating mechanism is employed to filter out low-quality concept features. Finally, the visual features are corresponding to individual medical concepts, and are leveraged to guide the report generation process. Experiments on two public benchmarks (MIMIC-CXR and CheXpert Plus) demonstrate that MCA-RG achieves superior performance, highlighting its effectiveness in radiology report generation.

Dataset and Benchmark for Enhancing Critical Retained Foreign Object Detection

Yuli Wang, Victoria R. Shi, Liwei Zhou, Richard Chin, Yuwei Dai, Yuanyun Hu, Cheng-Yi Li, Haoyue Guan, Jiashu Cheng, Yu Sun, Cheng Ting Lin, Ihab Kamel, Premal Trivedi, Pamela Johnson, John Eng, Harrison Bai

arxiv logopreprintJul 9 2025
Critical retained foreign objects (RFOs), including surgical instruments like sponges and needles, pose serious patient safety risks and carry significant financial and legal implications for healthcare institutions. Detecting critical RFOs using artificial intelligence remains challenging due to their rarity and the limited availability of chest X-ray datasets that specifically feature critical RFOs cases. Existing datasets only contain non-critical RFOs, like necklace or zipper, further limiting their utility for developing clinically impactful detection algorithms. To address these limitations, we introduce "Hopkins RFOs Bench", the first and largest dataset of its kind, containing 144 chest X-ray images of critical RFO cases collected over 18 years from the Johns Hopkins Health System. Using this dataset, we benchmark several state-of-the-art object detection models, highlighting the need for enhanced detection methodologies for critical RFO cases. Recognizing data scarcity challenges, we further explore image synthetic methods to bridge this gap. We evaluate two advanced synthetic image methods, DeepDRR-RFO, a physics-based method, and RoentGen-RFO, a diffusion-based method, for creating realistic radiographs featuring critical RFOs. Our comprehensive analysis identifies the strengths and limitations of each synthetic method, providing insights into effectively utilizing synthetic data to enhance model training. The Hopkins RFOs Bench and our findings significantly advance the development of reliable, generalizable AI-driven solutions for detecting critical RFOs in clinical chest X-rays.

Speckle2Self: Self-Supervised Ultrasound Speckle Reduction Without Clean Data

Xuesong Li, Nassir Navab, Zhongliang Jiang

arxiv logopreprintJul 9 2025
Image denoising is a fundamental task in computer vision, particularly in medical ultrasound (US) imaging, where speckle noise significantly degrades image quality. Although recent advancements in deep neural networks have led to substantial improvements in denoising for natural images, these methods cannot be directly applied to US speckle noise, as it is not purely random. Instead, US speckle arises from complex wave interference within the body microstructure, making it tissue-dependent. This dependency means that obtaining two independent noisy observations of the same scene, as required by pioneering Noise2Noise, is not feasible. Additionally, blind-spot networks also cannot handle US speckle noise due to its high spatial dependency. To address this challenge, we introduce Speckle2Self, a novel self-supervised algorithm for speckle reduction using only single noisy observations. The key insight is that applying a multi-scale perturbation (MSP) operation introduces tissue-dependent variations in the speckle pattern across different scales, while preserving the shared anatomical structure. This enables effective speckle suppression by modeling the clean image as a low-rank signal and isolating the sparse noise component. To demonstrate its effectiveness, Speckle2Self is comprehensively compared with conventional filter-based denoising algorithms and SOTA learning-based methods, using both realistic simulated US images and human carotid US images. Additionally, data from multiple US machines are employed to evaluate model generalization and adaptability to images from unseen domains. \textit{Code and datasets will be released upon acceptance.

Steps Adaptive Decay DPSGD: Enhancing Performance on Imbalanced Datasets with Differential Privacy with HAM10000

Xiaobo Huang, Fang Xie

arxiv logopreprintJul 9 2025
When applying machine learning to medical image classification, data leakage is a critical issue. Previous methods, such as adding noise to gradients for differential privacy, work well on large datasets like MNIST and CIFAR-100, but fail on small, imbalanced medical datasets like HAM10000. This is because the imbalanced distribution causes gradients from minority classes to be clipped and lose crucial information, while majority classes dominate. This leads the model to fall into suboptimal solutions early. To address this, we propose SAD-DPSGD, which uses a linear decaying mechanism for noise and clipping thresholds. By allocating more privacy budget and using higher clipping thresholds in the initial training phases, the model avoids suboptimal solutions and enhances performance. Experiments show that SAD-DPSGD outperforms Auto-DPSGD on HAM10000, improving accuracy by 2.15% under $\epsilon = 3.0$ , $\delta = 10^{-3}$.

Airway Segmentation Network for Enhanced Tubular Feature Extraction

Qibiao Wu, Yagang Wang, Qian Zhang

arxiv logopreprintJul 9 2025
Manual annotation of airway regions in computed tomography images is a time-consuming and expertise-dependent task. Automatic airway segmentation is therefore a prerequisite for enabling rapid bronchoscopic navigation and the clinical deployment of bronchoscopic robotic systems. Although convolutional neural network methods have gained considerable attention in airway segmentation, the unique tree-like structure of airways poses challenges for conventional and deformable convolutions, which often fail to focus on fine airway structures, leading to missed segments and discontinuities. To address this issue, this study proposes a novel tubular feature extraction network, named TfeNet. TfeNet introduces a novel direction-aware convolution operation that first applies spatial rotation transformations to adjust the sampling positions of linear convolution kernels. The deformed kernels are then represented as line segments or polylines in 3D space. Furthermore, a tubular feature fusion module (TFFM) is designed based on asymmetric convolution and residual connection strategies, enhancing the network's focus on subtle airway structures. Extensive experiments conducted on one public dataset and two datasets used in airway segmentation challenges demonstrate that the proposed TfeNet achieves more accuracy and continuous airway structure predictions compared with existing methods. In particular, TfeNet achieves the highest overall score of 94.95% on the current largest airway segmentation dataset, Airway Tree Modeling(ATM22), and demonstrates advanced performance on the lung fibrosis dataset(AIIB23). The code is available at https://github.com/QibiaoWu/TfeNet.

Label-Efficient Chest X-ray Diagnosis via Partial CLIP Adaptation

Heet Nitinkumar Dalsania

arxiv logopreprintJul 9 2025
Modern deep learning implementations for medical imaging usually rely on large labeled datasets. These datasets are often difficult to obtain due to privacy concerns, high costs, and even scarcity of cases. In this paper, a label-efficient strategy is proposed for chest X-ray diagnosis that seeks to reflect real-world hospital scenarios. The experiments use the NIH Chest X-ray14 dataset and a pre-trained CLIP ViT-B/32 model. The model is adapted via partial fine-tuning of its visual encoder and then evaluated using zero-shot and few-shot learning with 1-16 labeled examples per disease class. The tests demonstrate that CLIP's pre-trained vision-language features can be effectively adapted to few-shot medical imaging tasks, achieving over 20\% improvement in mean AUC score as compared to the zero-shot baseline. The key aspect of this work is to attempt to simulate internal hospital workflows, where image archives exist but annotations are sparse. This work evaluates a practical and scalable solution for both common and rare disease diagnosis. Additionally this research is intended for academic and experimental purposes only and has not been peer reviewed yet. All code is found at https://github.com/heet007-code/CLIP-disease-xray.
Page 17 of 2922917 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.