Multimodal ensemble machine learning predicts neurological outcome within three hours after out of hospital cardiac arrest.
Authors
Affiliations (2)
Affiliations (2)
- Department of Emergency and Critical Care Medicine, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, 634-8522, Japan. [email protected].
- Department of Emergency and Critical Care Medicine, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, 634-8522, Japan.
Abstract
This study aimed to determine if an ensemble (stacking) model that integrates three independently developed base models can reliably predict patients' neurological outcomes following out-of-hospital cardiac arrest (OHCA) within 3 h of arrival and outperform each individual model. This retrospective study included patients with OHCA (≥ 18 years) admitted directly to Nara Medical University between April 2015 and March 2024 who remained comatose for ≥ 3 h after arrival and had suitable head computed tomography (CT) images. The area under the receiver operating characteristic curve (AUC) and Briers scores were used to evaluate the performance of four models (resuscitation-related background OHCA score factors, bilateral pupil diameter, single-slice head CT within 3 h of arrival, and an ensemble stacked model combining these three models) in predicting favourable neurological outcomes at hospital discharge or 1 month, as defined by a Cerebral Performance Category scale of 1-2. Among 533 patients, 82 (15%) had favourable outcomes. The OHCA, pupil, and head CT models yielded AUCs of 0.76, 0.65, and 0.68 with Brier scores of 0.11, 0.13, and 0.12, respectively. The ensemble model outperformed the other models (AUC, 0.82; Brier score, 0.10), thereby supporting its application for early clinical decision-making and optimising resource allocation.