Sort by:
Page 19 of 30297 results

DFEN: Dual Feature Equalization Network for Medical Image Segmentation

Jianjian Yin, Yi Chen, Chengyu Li, Zhichao Zheng, Yanhui Gu, Junsheng Zhou

arxiv logopreprintMay 9 2025
Current methods for medical image segmentation primarily focus on extracting contextual feature information from the perspective of the whole image. While these methods have shown effective performance, none of them take into account the fact that pixels at the boundary and regions with a low number of class pixels capture more contextual feature information from other classes, leading to misclassification of pixels by unequal contextual feature information. In this paper, we propose a dual feature equalization network based on the hybrid architecture of Swin Transformer and Convolutional Neural Network, aiming to augment the pixel feature representations by image-level equalization feature information and class-level equalization feature information. Firstly, the image-level feature equalization module is designed to equalize the contextual information of pixels within the image. Secondly, we aggregate regions of the same class to equalize the pixel feature representations of the corresponding class by class-level feature equalization module. Finally, the pixel feature representations are enhanced by learning weights for image-level equalization feature information and class-level equalization feature information. In addition, Swin Transformer is utilized as both the encoder and decoder, thereby bolstering the ability of the model to capture long-range dependencies and spatial correlations. We conducted extensive experiments on Breast Ultrasound Images (BUSI), International Skin Imaging Collaboration (ISIC2017), Automated Cardiac Diagnosis Challenge (ACDC) and PH$^2$ datasets. The experimental results demonstrate that our method have achieved state-of-the-art performance. Our code is publicly available at https://github.com/JianJianYin/DFEN.

Hybrid Learning: A Novel Combination of Self-Supervised and Supervised Learning for MRI Reconstruction without High-Quality Training Reference

Haoyang Pei, Ding Xia, Xiang Xu, William Moore, Yao Wang, Hersh Chandarana, Li Feng

arxiv logopreprintMay 9 2025
Purpose: Deep learning has demonstrated strong potential for MRI reconstruction, but conventional supervised learning methods require high-quality reference images, which are often unavailable in practice. Self-supervised learning offers an alternative, yet its performance degrades at high acceleration rates. To overcome these limitations, we propose hybrid learning, a novel two-stage training framework that combines self-supervised and supervised learning for robust image reconstruction. Methods: Hybrid learning is implemented in two sequential stages. In the first stage, self-supervised learning is employed to generate improved images from noisy or undersampled reference data. These enhanced images then serve as pseudo-ground truths for the second stage, which uses supervised learning to refine reconstruction performance and support higher acceleration rates. We evaluated hybrid learning in two representative applications: (1) accelerated 0.55T spiral-UTE lung MRI using noisy reference data, and (2) 3D T1 mapping of the brain without access to fully sampled ground truth. Results: For spiral-UTE lung MRI, hybrid learning consistently improved image quality over both self-supervised and conventional supervised methods across different acceleration rates, as measured by SSIM and NMSE. For 3D T1 mapping, hybrid learning achieved superior T1 quantification accuracy across a wide dynamic range, outperforming self-supervised learning in all tested conditions. Conclusions: Hybrid learning provides a practical and effective solution for training deep MRI reconstruction networks when only low-quality or incomplete reference data are available. It enables improved image quality and accurate quantitative mapping across different applications and field strengths, representing a promising technique toward broader clinical deployment of deep learning-based MRI.

Towards Better Cephalometric Landmark Detection with Diffusion Data Generation

Dongqian Guo, Wencheng Han, Pang Lyu, Yuxi Zhou, Jianbing Shen

arxiv logopreprintMay 9 2025
Cephalometric landmark detection is essential for orthodontic diagnostics and treatment planning. Nevertheless, the scarcity of samples in data collection and the extensive effort required for manual annotation have significantly impeded the availability of diverse datasets. This limitation has restricted the effectiveness of deep learning-based detection methods, particularly those based on large-scale vision models. To address these challenges, we have developed an innovative data generation method capable of producing diverse cephalometric X-ray images along with corresponding annotations without human intervention. To achieve this, our approach initiates by constructing new cephalometric landmark annotations using anatomical priors. Then, we employ a diffusion-based generator to create realistic X-ray images that correspond closely with these annotations. To achieve precise control in producing samples with different attributes, we introduce a novel prompt cephalometric X-ray image dataset. This dataset includes real cephalometric X-ray images and detailed medical text prompts describing the images. By leveraging these detailed prompts, our method improves the generation process to control different styles and attributes. Facilitated by the large, diverse generated data, we introduce large-scale vision detection models into the cephalometric landmark detection task to improve accuracy. Experimental results demonstrate that training with the generated data substantially enhances the performance. Compared to methods without using the generated data, our approach improves the Success Detection Rate (SDR) by 6.5%, attaining a notable 82.2%. All code and data are available at: https://um-lab.github.io/cepha-generation

Towards order of magnitude X-ray dose reduction in breast cancer imaging using phase contrast and deep denoising

Ashkan Pakzad, Robert Turnbull, Simon J. Mutch, Thomas A. Leatham, Darren Lockie, Jane Fox, Beena Kumar, Daniel Häsermann, Christopher J. Hall, Anton Maksimenko, Benedicta D. Arhatari, Yakov I. Nesterets, Amir Entezam, Seyedamir T. Taba, Patrick C. Brennan, Timur E. Gureyev, Harry M. Quiney

arxiv logopreprintMay 9 2025
Breast cancer is the most frequently diagnosed human cancer in the United States at present. Early detection is crucial for its successful treatment. X-ray mammography and digital breast tomosynthesis are currently the main methods for breast cancer screening. However, both have known limitations in terms of their sensitivity and specificity to breast cancers, while also frequently causing patient discomfort due to the requirement for breast compression. Breast computed tomography is a promising alternative, however, to obtain high-quality images, the X-ray dose needs to be sufficiently high. As the breast is highly radiosensitive, dose reduction is particularly important. Phase-contrast computed tomography (PCT) has been shown to produce higher-quality images at lower doses and has no need for breast compression. It is demonstrated in the present study that, when imaging full fresh mastectomy samples with PCT, deep learning-based image denoising can further reduce the radiation dose by a factor of 16 or more, without any loss of image quality. The image quality has been assessed both in terms of objective metrics, such as spatial resolution and contrast-to-noise ratio, as well as in an observer study by experienced medical imaging specialists and radiologists. This work was carried out in preparation for live patient PCT breast cancer imaging, initially at specialized synchrotron facilities.

Robust & Precise Knowledge Distillation-based Novel Context-Aware Predictor for Disease Detection in Brain and Gastrointestinal

Saif Ur Rehman Khan, Muhammad Nabeel Asim, Sebastian Vollmer, Andreas Dengel

arxiv logopreprintMay 9 2025
Medical disease prediction, particularly through imaging, remains a challenging task due to the complexity and variability of medical data, including noise, ambiguity, and differing image quality. Recent deep learning models, including Knowledge Distillation (KD) methods, have shown promising results in brain tumor image identification but still face limitations in handling uncertainty and generalizing across diverse medical conditions. Traditional KD methods often rely on a context-unaware temperature parameter to soften teacher model predictions, which does not adapt effectively to varying uncertainty levels present in medical images. To address this issue, we propose a novel framework that integrates Ant Colony Optimization (ACO) for optimal teacher-student model selection and a novel context-aware predictor approach for temperature scaling. The proposed context-aware framework adjusts the temperature based on factors such as image quality, disease complexity, and teacher model confidence, allowing for more robust knowledge transfer. Additionally, ACO efficiently selects the most appropriate teacher-student model pair from a set of pre-trained models, outperforming current optimization methods by exploring a broader solution space and better handling complex, non-linear relationships within the data. The proposed framework is evaluated using three publicly available benchmark datasets, each corresponding to a distinct medical imaging task. The results demonstrate that the proposed framework significantly outperforms current state-of-the-art methods, achieving top accuracy rates: 98.01% on the MRI brain tumor (Kaggle) dataset, 92.81% on the Figshare MRI dataset, and 96.20% on the GastroNet dataset. This enhanced performance is further evidenced by the improved results, surpassing existing benchmarks of 97.24% (Kaggle), 91.43% (Figshare), and 95.00% (GastroNet).

LMLCC-Net: A Semi-Supervised Deep Learning Model for Lung Nodule Malignancy Prediction from CT Scans using a Novel Hounsfield Unit-Based Intensity Filtering

Adhora Madhuri, Nusaiba Sobir, Tasnia Binte Mamun, Taufiq Hasan

arxiv logopreprintMay 9 2025
Lung cancer is the leading cause of patient mortality in the world. Early diagnosis of malignant pulmonary nodules in CT images can have a significant impact on reducing disease mortality and morbidity. In this work, we propose LMLCC-Net, a novel deep learning framework for classifying nodules from CT scan images using a 3D CNN, considering Hounsfield Unit (HU)-based intensity filtering. Benign and malignant nodules have significant differences in their intensity profile of HU, which was not exploited in the literature. Our method considers the intensity pattern as well as the texture for the prediction of malignancies. LMLCC-Net extracts features from multiple branches that each use a separate learnable HU-based intensity filtering stage. Various combinations of branches and learnable ranges of filters were explored to finally produce the best-performing model. In addition, we propose a semi-supervised learning scheme for labeling ambiguous cases and also developed a lightweight model to classify the nodules. The experimental evaluations are carried out on the LUNA16 dataset. Our proposed method achieves a classification accuracy (ACC) of 91.96%, a sensitivity (SEN) of 92.04%, and an area under the curve (AUC) of 91.87%, showing improved performance compared to existing methods. The proposed method can have a significant impact in helping radiologists in the classification of pulmonary nodules and improving patient care.

Circulating Antioxidant Nutrients and Brain Age in Midlife Adults.

Lower MJ, DeCataldo MK, Kraynak TE, Gianaros PJ

pubmed logopapersMay 9 2025
Due to population aging, the increasing prevalence of Alzheimer's Disease (AD) and related dementias are major public health concerns. Dietary consumption of antioxidant nutrients, in particular the carotenoid β-carotene, has been associated with lower age-related neurocognitive decline. What is unclear, however, is the extent to which antioxidant nutrients may exert neuroprotective effects via their influence on established indicators of age-related changes in brain tissue. This study thus tested associations of circulating β-carotene and other nutrients with a structural neuroimaging indicator of brain age derived from cross-validated machine learning models trained to predict chronological age from brain tissue morphology in independent cohorts. Midlife adults (N=132, aged 30.4 to 50.8 years, 59 female at birth) underwent a structural magnetic resonance imaging (MRI) protocol and fasting phlebotomy to assess plasma concentrations of β-carotene, retinol, γ-tocopherol, ⍺-tocopherol, and β-cryptoxanthin. In regression analyses adjusting for chronological age, sex at birth, smoking status, MRI image quality, season of testing, annual income, and education, greater circulating levels of β-carotene were associated with a lower (i.e., younger) predicted brain age (β=-0.23, 95% CI=-0.40 to -0.07, P=0.006). Other nutrients were not statistically associated with brain age, and results persisted after additional covariate control for body mass index, cortical volume, and cortical thickness. These cross-sectional findings are consistent with the possibility that dietary intake of β-carotene may be associated with slower biological aging at the level of the brain, as reflected by a neuroimaging indicator of brain age.

Multimodal Integration of Plasma, MRI, and Genetic Risk for Cerebral Amyloid Prediction

yichen, w., Chen, H., yuxin, C., Yuyan, C., shiyun, Z., Kexin, W., Yidong, J., Tianyu, B., Yanxi, H., MingKai, Z., Chengxiang, Y., Guozheng, F., Weijie, H., Ni, S., Ying, H.

medrxiv logopreprintMay 8 2025
Accurate estimation of cerebral amyloid-{beta} (A{beta}) burden is critical for early detection and risk stratification in Alzheimers disease (AD). While A{beta} positron emission tomography (PET) remains the gold standard, its high cost, invasive nature and limited accessibility hinder broad clinical application. Blood-based biomarkers offer a non-invasive and cost-effective alternative, but their standalone predictive accuracy remains limited due to biological heterogeneity and limited reflection of central nervous system pathology. Here, we present a high-precision, multimodal prediction machine learning model that integrates plasma biomarkers, brain structural magnetic resonance imaging (sMRI) features, diffusion tensor imaging (DTI)-derived structural connectomes, and genetic risk profiles. The model was trained on 150 participants from the Alzheimers Disease Neuroimaging Initiative (ADNI) and externally validated on 111 participants from the SILCODE cohort. Multimodal integration substantially improved A{beta} prediction, with R{superscript 2} increasing from 0.515 using plasma biomarkers alone to 0.637 when adding imaging and genetic features. These results highlight the potential of this multimodal machine learning approach as a scalable, non-invasive, and economically viable alternative to PET for estimating A{beta} burden.

Automated detection of bottom-of-sulcus dysplasia on MRI-PET in patients with drug-resistant focal epilepsy

Macdonald-Laurs, E., Warren, A. E. L., Mito, R., Genc, S., Alexander, B., Barton, S., Yang, J. Y., Francis, P., Pardoe, H. R., Jackson, G., Harvey, A. S.

medrxiv logopreprintMay 8 2025
Background and ObjectivesBottom-of-sulcus dysplasia (BOSD) is a diagnostically challenging subtype of focal cortical dysplasia, 60% being missed on patients first MRI. Automated MRI-based detection methods have been developed for focal cortical dysplasia, but not BOSD specifically. Use of FDG-PET alongside MRI is not established in automated methods. We report the development and performance of an automated BOSD detector using combined MRI+PET data. MethodsThe training set comprised 54 mostly operated patients with BOSD. The test sets comprised 17 subsequently diagnosed patients with BOSD from the same center, and 12 published patients from a different center. 81% patients across training and test sets had reportedly normal first MRIs and most BOSDs were <1.5cm3. In the training set, 12 features from T1-MRI, FLAIR-MRI and FDG-PET were evaluated using a novel "pseudo-control" normalization approach to determine which features best distinguished dysplastic from normal-appearing cortex. Using the Multi-centre Epilepsy Lesion Detection groups machine-learning detection method with the addition of FDG-PET, neural network classifiers were then trained and tested on MRI+PET features, MRI-only and PET-only. The proportion of patients whose BOSD was overlapped by the top output cluster, and the top five output clusters, were assessed. ResultsCortical and subcortical hypometabolism on FDG-PET were superior in discriminating dysplastic from normal-appearing cortex compared to MRI features. When the BOSD detector was trained on MRI+PET features, 87% BOSDs were overlapped by one of the top five clusters (69% top cluster) in the training set, 76% in the prospective test set (71% top cluster) and 75% in the published test set (42% top cluster). Cluster overlap was similar when the detector was trained and tested on PET-only features but lower when trained and tested on MRI-only features. ConclusionDetection of BOSD is possible using established MRI-based automated detection methods, supplemented with FDG-PET features and trained on a BOSD-specific cohort. In clinical practice, an MRI+PET BOSD detector could improve assessment and outcomes in seemingly MRI-negative patients being considered for epilepsy surgery.

Comparative analysis of open-source against commercial AI-based segmentation models for online adaptive MR-guided radiotherapy.

Langner D, Nachbar M, Russo ML, Boeke S, Gani C, Niyazi M, Thorwarth D

pubmed logopapersMay 8 2025
Online adaptive magnetic resonance-guided radiotherapy (MRgRT) has emerged as a state-of-the-art treatment option for multiple tumour entities, accounting for daily anatomical and tumour volume changes, thus allowing sparing of relevant organs at risk (OARs). However, the annotation of treatment-relevant anatomical structures in context of online plan adaptation remains challenging, often relying on commercial segmentation solutions due to limited availability of clinically validated alternatives. The aim of this study was to investigate whether an open-source artificial intelligence (AI) segmentation network can compete with the annotation accuracy of a commercial solution, both trained on the identical dataset, questioning the need for commercial models in clinical practice. For 47 pelvic patients, T2w MR imaging data acquired on a 1.5 T MR-Linac were manually contoured, identifying prostate, seminal vesicles, rectum, anal canal, bladder, penile bulb, and bony structures. These training data were used for the generation of an in-house AI segmentation model, a nnU-Net with residual encoder architecture featuring a streamlined single image inference pipeline, and re-training of a commercial solution. For quantitative evaluation, 20 MR images were contoured by a radiation oncologist, considered as ground truth contours (GTC) and compared with the in-house/commercial AI-based contours (iAIC/cAIC) using Dice Similarity Coefficient (DSC), 95% Hausdorff distances (HD95), and surface DSC (sDSC). For qualitative evaluation, four radiation oncologists assessed the usability of OAR/target iAIC within an online adaptive workflow using a four-point Likert scale: (1) acceptable without modification, (2) requiring minor adjustments, (3) requiring major adjustments, and (4) not usable. Patient-individual annotations were generated in a median [range] time of 23 [16-34] s for iAIC and 152 [121-198] s for cAIC, respectively. OARs showed a maximum median DSC of 0.97/0.97 (iAIC/cAIC) for bladder and minimum median DSC of 0.78/0.79 (iAIC/cAIC) for anal canal/penile bulb. Maximal respectively minimal median HD95 were detected for rectum with 17.3/20.6 mm (iAIC/cAIC) and for bladder with 5.6/6.0 mm (iAIC/cAIC). Overall, the average median DSC/HD95 values were 0.87/11.8mm (iAIC) and 0.83/10.2mm (cAIC) for OAR/targets and 0.90/11.9mm (iAIC) and 0.91/16.5mm (cAIC) for bony structures. For a tolerance of 3 mm, the highest and lowest sDSC were determined for bladder (iAIC:1.00, cAIC:0.99) and prostate in iAIC (0.89) and anal canal in cAIC (0.80), respectively. Qualitatively, 84.8% of analysed contours were considered as clinically acceptable for iAIC, while 12.9% required minor and 2.3% major adjustments or were classed as unusable. Contour-specific analysis showed that iAIC achieved the highest mean scores with 1.00 for the anal canal and the lowest with 1.61 for the prostate. This study demonstrates that open-source segmentation framework can achieve comparable annotation accuracy to commercial solutions for pelvic anatomy in online adaptive MRgRT. The adapted framework not only maintained high segmentation performance, with 84.8% of contours accepted by physicians or requiring only minor corrections (12.9%) but also enhanced clinical workflow efficiency of online adaptive MRgRT through reduced inference times. These findings establish open-source frameworks as viable alternatives to commercial systems in supervised clinical workflows.
Page 19 of 30297 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.