Machine Learning-Driven Radiomic Profiling of Thalamus-Amygdala Nuclei for Prediction of Postoperative Delirium After STN-DBS in Parkinson's Disease Patients: A Pilot Study.
Authors
Affiliations (6)
Affiliations (6)
- Department of Neurosurgery, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 2, Kaunas, LT-50161, Lithuania.
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, Kaunas, LT-50161, Lithuania.
- Department of Health Psychology, Faculty of Public Health, Medical Academy, Lithuanian University of Health Sciences, Tilzes str. 18, Kaunas, LT-47181, Lithuania.
- Department of Neurology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 2, Kaunas, LT-50161, Lithuania.
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, Kaunas, LT-50161, Lithuania. [email protected].
- Department of Health Psychology, Faculty of Public Health, Medical Academy, Lithuanian University of Health Sciences, Tilzes str. 18, Kaunas, LT-47181, Lithuania. [email protected].
Abstract
Postoperative delirium is a common complication following sub-thalamic nucleus deep brain stimulation surgery in Parkinson's disease patients. Postoperative delirium has been shown to prolong hospital stays, harm cognitive function, and negatively impact outcomes. Utilizing radiomics as a predictive tool for identifying patients at risk of delirium is a novel and personalized approach. This pilot study analyzed preoperative T1-weighted and T2-weighted magnetic resonance images from 34 Parkinson's disease patients, which were used to segment the thalamus, amygdala, and hippocampus, resulting in 10,680 extracted radiomic features. Feature selection using the minimum redundancy maximal relevance method identified the 20 most informative features, which were input into eight different machine learning algorithms. A high predictive accuracy of postoperative delirium was achieved by applying regularized binary logistic regression and linear discriminant analysis and using 10 most informative radiomic features. Regularized logistic regression resulted in 96.97% (±6.20) balanced accuracy, 99.5% (±4.97) sensitivity, 94.43% (±10.70) specificity, and area under the receiver operating characteristic curve of 0.97 (±0.06). Linear discriminant analysis showed 98.42% (±6.57) balanced accuracy, 98.00% (±9.80) sensitivity, 98.83% (±4.63) specificity, and area under the receiver operating characteristic curve of 0.98 (±0.07). The feed-forward neural network also demonstrated strong predictive capacity, achieving 96.17% (±10.40) balanced accuracy, 94.5% (±19.87) sensitivity, 97.83% (±7.87) specificity, and an area under the receiver operating characteristic curve of 0.96 (±0.10). However, when the feature set was extended to 20 features, both logistic regression and linear discriminant analysis showed reduced performance, while the feed-forward neural network achieved the highest predictive accuracy of 99.28% (±2.71), with 100.0% (±0.00) sensitivity, 98.57% (±5.42) specificity, and an area under the receiver operating characteristic curve of 0.99 (±0.03). Selected radiomic features might indicate network dysfunction between thalamic laterodorsal, reuniens medial ventral, and amygdala basal nuclei with hippocampus cornu ammonis 4 in these patients. This finding expands previous research suggesting the importance of the thalamic-hippocampal-amygdala network for postoperative delirium due to alterations in neuronal activity.