Sort by:
Page 115 of 2922917 results

Comparison of publicly available artificial intelligence models for pancreatic segmentation on T1-weighted Dixon images.

Sonoda Y, Fujisawa S, Kurokawa M, Gonoi W, Hanaoka S, Yoshikawa T, Abe O

pubmed logopapersJun 18 2025
This study aimed to compare three publicly available deep learning models (TotalSegmentator, TotalVibeSegmentator, and PanSegNet) for automated pancreatic segmentation on magnetic resonance images and to evaluate their performance against human annotations in terms of segmentation accuracy, volumetric measurement, and intrapancreatic fat fraction (IPFF) assessment. Twenty upper abdominal T1-weighted magnetic resonance series acquired using the two-point Dixon method were randomly selected. Three radiologists manually segmented the pancreas, and a ground-truth mask was constructed through a majority vote per voxel. Pancreatic segmentation was also performed using the three artificial intelligence models. Performance was evaluated using the Dice similarity coefficient (DSC), 95th-percentile Hausdorff distance, average symmetric surface distance, positive predictive value, sensitivity, Bland-Altman plots, and concordance correlation coefficient (CCC) for pancreatic volume and IPFF. PanSegNet achieved the highest DSC (mean ± standard deviation, 0.883 ± 0.095) and showed no statistically significant difference from the human interobserver DSC (0.896 ± 0.068; p = 0.24). In contrast, TotalVibeSegmentator (0.731 ± 0.105) and TotalSegmentator (0.707 ± 0.142) had significantly lower DSC values compared with the human interobserver average (p < 0.001). For pancreatic volume and IPFF, PanSegNet demonstrated the best agreement with the ground truth (CCC values of 0.958 and 0.993, respectively), followed by TotalSegmentator (0.834 and 0.980) and TotalVibeSegmentator (0.720 and 0.672). PanSegNet demonstrated the highest segmentation accuracy and the best agreement with human measurements for both pancreatic volume and IPFF on T1-weighted Dixon images. This model appears to be the most suitable for large-scale studies requiring automated pancreatic segmentation and intrapancreatic fat evaluation.

Artificial Intelligence-Assisted Segmentation of Prostate Tumors and Neurovascular Bundles: Applications in Precision Surgery for Prostate Cancer.

Mei H, Yang R, Huang J, Jiao P, Liu X, Chen Z, Chen H, Zheng Q

pubmed logopapersJun 18 2025
The aim of this study was to guide prostatectomy by employing artificial intelligence for the segmentation of tumor gross tumor volume (GTV) and neurovascular bundles (NVB). The preservation and dissection of NVB differ between intrafascial and extrafascial robot-assisted radical prostatectomy (RARP), impacting postoperative urinary control. We trained the nnU-Net v2 neural network using data from 220 patients in the PI-CAI cohort for the segmentation of prostate GTV and NVB in biparametric magnetic resonance imaging (bpMRI). The model was then validated in an external cohort of 209 patients from Renmin Hospital of Wuhan University (RHWU). Utilizing three-dimensional reconstruction and point cloud analysis, we explored the spatial distribution of GTV and NVB in relation to intrafascial and extrafascial approaches. We also prospectively included 40 patients undergoing intrafascial and extrafascial RARP, applying the aforementioned procedure to classify the surgical approach. Additionally, 3D printing was employed to guide surgery, and follow-ups on short- and long-term urinary function in patients were conducted. The nnU-Net v2 neural network demonstrated precise segmentation of GTV, NVB, and prostate, achieving Dice scores of 0.5573 ± 0.0428, 0.7679 ± 0.0178, and 0.7483 ± 0.0290, respectively. By establishing the distance from GTV to NVB, we successfully predicted the surgical approach. Urinary control analysis revealed that the extrafascial approach yielded better postoperative urinary function, facilitating more refined management of patients with prostate cancer and personalized medical care. Artificial intelligence technology can accurately identify GTV and NVB in preoperative bpMRI of patients with prostate cancer and guide the choice between intrafascial and extrafascial RARP. Patients undergoing intrafascial RARP with preserved NVB demonstrate improved postoperative urinary control.

EchoFM: Foundation Model for Generalizable Echocardiogram Analysis.

Kim S, Jin P, Song S, Chen C, Li Y, Ren H, Li X, Liu T, Li Q

pubmed logopapersJun 18 2025
Echocardiography is the first-line noninvasive cardiac imaging modality, providing rich spatio-temporal information on cardiac anatomy and physiology. Recently, foundation model trained on extensive and diverse datasets has shown strong performance in various downstream tasks. However, translating foundation models into the medical imaging domain remains challenging due to domain differences between medical and natural images, the lack of diverse patient and disease datasets. In this paper, we introduce EchoFM, a general-purpose vision foundation model for echocardiography trained on a large-scale dataset of over 20 million echocardiographic images from 6,500 patients. To enable effective learning of rich spatio-temporal representations from periodic videos, we propose a novel self-supervised learning framework based on a masked autoencoder with a spatio-temporal consistent masking strategy and periodic-driven contrastive learning. The learned cardiac representations can be readily adapted and fine-tuned for a wide range of downstream tasks, serving as a strong and flexible backbone model. We validate EchoFM through experiments across key downstream tasks in the clinical echocardiography workflow, leveraging public and multi-center internal datasets. EchoFM consistently outperforms SOTA methods, demonstrating superior generalization capabilities and flexibility. The code and checkpoints are available at: https://github.com/SekeunKim/EchoFM.git.

RadioRAG: Online Retrieval-augmented Generation for Radiology Question Answering.

Tayebi Arasteh S, Lotfinia M, Bressem K, Siepmann R, Adams L, Ferber D, Kuhl C, Kather JN, Nebelung S, Truhn D

pubmed logopapersJun 18 2025
<i>"Just Accepted" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Purpose To evaluate diagnostic accuracy of various large language models (LLMs) when answering radiology-specific questions with and without access to additional online, up-to-date information via retrieval-augmented generation (RAG). Materials and Methods The authors developed Radiology RAG (RadioRAG), an end-to-end framework that retrieves data from authoritative radiologic online sources in real-time. RAG incorporates information retrieval from external sources to supplement the initial prompt, grounding the model's response in relevant information. Using 80 questions from the RSNA Case Collection across radiologic subspecialties and 24 additional expert-curated questions with reference standard answers, LLMs (GPT-3.5-turbo, GPT-4, Mistral-7B, Mixtral-8 × 7B, and Llama3 [8B and 70B]) were prompted with and without RadioRAG in a zero-shot inference scenario (temperature ≤ 0.1, top- <i>P</i> = 1). RadioRAG retrieved context-specific information from www.radiopaedia.org. Accuracy of LLMs with and without RadioRAG in answering questions from each dataset was assessed. Statistical analyses were performed using bootstrapping while preserving pairing. Additional assessments included comparison of model with human performance and comparison of time required for conventional versus RadioRAG-powered question answering. Results RadioRAG improved accuracy for some LLMs, including GPT-3.5-turbo [74% (59/80) versus 66% (53/80), FDR = 0.03] and Mixtral-8 × 7B [76% (61/80) versus 65% (52/80), FDR = 0.02] on the RSNA-RadioQA dataset, with similar trends in the ExtendedQA dataset. Accuracy exceeded (FDR ≤ 0.007) that of a human expert (63%, (50/80)) for these LLMs, while not for Mistral-7B-instruct-v0.2, Llama3-8B, and Llama3-70B (FDR ≥ 0.21). RadioRAG reduced hallucinations for all LLMs (rates from 6-25%). RadioRAG increased estimated response time fourfold. Conclusion RadioRAG shows potential to improve LLM accuracy and factuality in radiology question answering by integrating real-time domain-specific data. ©RSNA, 2025.

Dual-scan self-learning denoising for application in ultralow-field MRI.

Zhang Y, He W, Wu J, Xu Z

pubmed logopapersJun 18 2025
This study develops a self-learning method to denoise MR images for use in ultralow field (ULF) applications. We propose use of a self-learning neural network for denoising 3D MRI obtained from two acquisitions (dual scan), which are utilized as training pairs. Based on the self-learning method Noise2Noise, an effective data augmentation method and integrated learning strategy for enhancing model performance are proposed. Experimental results demonstrate that (1) the proposed model can produce exceptional denoising results and outperform the traditional Noise2Noise method subjectively and objectively; (2) magnitude images can be effectively denoised comparing with several state-of-the-art methods on synthetic and real ULF data; and (3) the proposed method can yield better results on phase images and quantitative imaging applications than other denoisers due to the self-learning framework. Theoretical and experimental implementations show that the proposed self-learning model achieves improved performance on magnitude image denoising with synthetic and real-world data at ULF. Additionally, we test our method on calculated phase and quantification images, demonstrating its superior performance over several contrastive methods.

RECIST<sup>Surv</sup>: Hybrid Multi-task Transformer for Hepatocellular Carcinoma Response and Survival Evaluation.

Jiao R, Liu Q, Zhang Y, Pu B, Xue B, Cheng Y, Yang K, Liu X, Qu J, Jin C, Zhang Y, Wang Y, Zhang YD

pubmed logopapersJun 18 2025
Transarterial Chemoembolization (TACE) is a widely applied alternative treatment for patients with hepatocellular carcinoma who are not eligible for liver resection or transplantation. However, the clinical outcomes after TACE are highly heterogeneous. There remains an urgent need for effective and efficient strategies to accurately assess tumor response and predict long-term outcomes using longitudinal and multi-center datasets. To address this challenge, we here introduce RECIST<sup>Surv</sup>, a novel response-driven Transformer model that integrates multi-task learning with a response-driven co-attention mechanism to simultaneously perform liver and tumor segmentation, predict tumor response to TACE, and estimate overall survival based on longitudinal Computed Tomography (CT) imaging. The proposed Response-driven Co-attention layer models the interactions between pre-TACE and post-TACE features guided by the treatment response embedding. This design enables the model to capture complex relationships between imaging features, treatment response, and survival outcomes, thereby enhancing both prediction accuracy and interpretability. In a multi-center validation study, RECIST<sup>Surv</sup>-predicted prognosis has demonstrated superior precision than state-of-the-art methods with C-indexes ranging from 0.595 to 0.780. Furthermore, when integrated with multi-modal data, RECIST<sup>Surv</sup> has emerged as an independent prognostic factor in all three validation cohorts, with hazard ratio (HR) ranging from 1.693 to 20.7 (P = 0.001-0.042). Our results highlight the potential of RECIST<sup>Surv</sup> as a powerful tool for personalized treatment planning and outcome prediction in hepatocellular carcinoma patients undergoing TACE. The experimental code is made publicly available at https://github.com/rushier/RECISTSurv.

Quality control system for patient positioning and filling in meta-information for chest X-ray examinations.

Borisov AA, Semenov SS, Kirpichev YS, Arzamasov KM, Omelyanskaya OV, Vladzymyrskyy AV, Vasilev YA

pubmed logopapersJun 18 2025
During radiography, irregularities occur, leading to decrease in the diagnostic value of the images obtained. The purpose of this work was to develop a system for automated quality assurance of patient positioning in chest radiographs, with detection of suboptimal contrast, brightness, and metadata errors. The quality assurance system was trained and tested using more than 69,000 X-rays of the chest and other anatomical areas from the Unified Radiological Information Service (URIS) and several open datasets. Our dataset included studies regardless of a patient's gender and race, while the sole exclusion criterion being age below 18 years. A training dataset of radiographs labeled by expert radiologists was used to train an ensemble of modified deep convolutional neural networks architectures ResNet152V2 and VGG19 to identify various quality deficiencies. Model performance was accessed using area under the receiver operating characteristic curve (ROC-AUC), precision, recall, F1-score, and accuracy metrics. Seven neural network models were trained to classify radiographs by the following quality deficiencies: failure to capture the target anatomic region, chest rotation, suboptimal brightness, incorrect anatomical area, projection errors, and improper photometric interpretation. All metrics for each model exceed 95%, indicating high predictive value. All models were combined into a unified system for evaluating radiograph quality. The processing time per image is approximately 3 s. The system supports multiple use cases: integration into an automated radiographic workstations, external quality assurance system for radiology departments, acquisition quality audits for municipal health systems, and routing of studies to diagnostic AI models.

Sex, stature, and age estimation from skull using computed tomography images: Current status, challenges, and future perspectives.

Du Z, Navic P, Mahakkanukrauh P

pubmed logopapersJun 18 2025
The skull has long been recognized and utilized in forensic investigations, evolving from basic to complex analyses with modern technologies. Advances in radiology and technology have enhanced the ability to analyze biological identifiers-sex, stature, and age at death-from the skull. The use of computed tomography imaging helps practitioners to improve the accuracy and reliability of forensic analyses. Recently, artificial intelligence has increasingly been applied in digital forensic investigations to estimate sex, stature, and age from computed tomography images. The integration of artificial intelligence represents a significant shift in multidisciplinary collaboration, offering the potential for more accurate and reliable identification, along with advancements in academia. However, it is not yet fully developed for routine forensic work, as it remains largely in the research and development phase. Additionally, the limitations of artificial intelligence systems, such as the lack of transparency in algorithms, accountability for errors, and the potential for discrimination, must still be carefully considered. Based on scientific publications from the past decade, this article aims to provide an overview of the application of computed tomography imaging in estimating sex, stature, and age from the skull and to address issues related to future directions to further improvement.

Identification, characterisation and outcomes of pre-atrial fibrillation in heart failure with reduced ejection fraction.

Helbitz A, Nadarajah R, Mu L, Larvin H, Ismail H, Wahab A, Thompson P, Harrison P, Harris M, Joseph T, Plein S, Petrie M, Metra M, Wu J, Swoboda P, Gale CP

pubmed logopapersJun 18 2025
Atrial fibrillation (AF) in heart failure with reduced ejection fraction (HFrEF) has prognostic implications. Using a machine learning algorithm (FIND-AF), we aimed to explore clinical events and the cardiac magnetic resonance (CMR) characteristics of the pre-AF phenotype in HFrEF. A cohort of individuals aged ≥18 years with HFrEF without AF from the MATCH 1 and MATCH 2 studies (2018-2024) stratified by FIND-AF score. All received cardiac magnetic resonance using Cvi42 software for volumetric and T1/T2. The primary outcome was time to a composite of MACE inclusive of heart failure hospitalisation, myocardial infarction, stroke and all-cause mortality. Secondary outcomes included the association between CMR findings and FIND-AF score. Of 385 patients [mean age 61.7 (12.6) years, 39.0% women] with a median 2.5 years follow-up, the primary outcome occurred in 58 (30.2%) patients in the high FIND-AF risk group and 23 (11.9%) in the low FIND-AF risk group (hazard ratio 3.25, 95% CI 2.00-5.28, P < 0.001). Higher FIND-AF score was associated with higher indexed left ventricular mass (β = 4.7, 95% CI 0.5-8.9), indexed left atrial volume (β = 5.9, 95% CI 2.2-9.6), higher indexed left ventricular end-diastolic volume (β = 9.55, 95% CI 1.37-17.74, P = 0.022), native T1 signal (β = 18.0, 95% CI 7.0-29.1) and extracellular volume (β = 1.6, 95% CI 0.6-2.5). A pre-AF HFrEF subgroup with distinct CMR characteristics and poor prognosis may be identified, potentially guiding interventions to reduce clinical events.

Deep Learning-Based Adrenal Gland Volumetry for the Prediction of Diabetes.

Ku EJ, Yoon SH, Park SS, Yoon JW, Kim JH

pubmed logopapersJun 18 2025
The long-term association between adrenal gland volume (AGV) and type 2 diabetes (T2D) remains unclear. We aimed to determine the association between deep learning-based AGV and current glycemic status and incident T2D. In this observational study, adults who underwent abdominopelvic computed tomography (CT) for health checkups (2011-2012), but had no adrenal nodules, were included. AGV was measured from CT images using a three-dimensional nnU-Net deep learning algorithm. We assessed the association between AGV and T2D using a cross-sectional and longitudinal design. We used 500 CT scans (median age, 52.3 years; 253 men) for model development and a Multi-Atlas Labeling Beyond the Cranial Vault dataset for external testing. A clinical cohort included a total of 9708 adults (median age, 52.0 years; 5,769 men). The deep learning model demonstrated a dice coefficient of 0.71±0.11 for adrenal segmentation and a mean volume difference of 0.6± 0.9 mL in the external dataset. Participants with T2D at baseline had a larger AGV than those without (7.3 cm3 vs. 6.7 cm3 and 6.3 cm3 vs. 5.5 cm3 for men and women, respectively, all P<0.05). The optimal AGV cutoff values for predicting T2D were 7.2 cm3 in men and 5.5 cm3 in women. Over a median 7.0-year follow-up, T2D developed in 938 participants. Cumulative T2D risk was accentuated with high AGV compared with low AGV (adjusted hazard ratio, 1.27; 95% confidence interval, 1.11 to 1.46). AGV, measured using deep learning algorithms, is associated with current glycemic status and can significantly predict the development of T2D.
Page 115 of 2922917 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.