Sort by:
Page 90 of 94940 results

Artificial Intelligence based radiomic model in Craniopharyngiomas: A Systematic Review and Meta-Analysis on Diagnosis, Segmentation, and Classification.

Mohammadzadeh I, Hajikarimloo B, Niroomand B, Faizi N, Faizi N, Habibi MA, Mohammadzadeh S, Soltani R

pubmed logopapersMay 7 2025
Craniopharyngiomas (CPs) are rare, benign brain tumors originating from Rathke's pouch remnants, typically located in the sellar/parasellar region. Accurate differentiation is crucial due to varying prognoses, with ACPs having higher recurrence and worse outcomes. MRI struggles with overlapping features, complicating diagnosis. this study evaluates the role of Artificial Intelligence (AI) in diagnosing, segmenting, and classifying CPs, emphasizing its potential to improve clinical decision-making, particularly for radiologists and neurosurgeons. This systematic review and meta-analysis assess AI applications in diagnosing, segmenting, and classifying on CPs patients. a comprehensive search was conducted across PubMed, Scopus, Embase and Web of Science for studies employing AI models in patients with CP. Performance metrics such as sensitivity, specificity, accuracy, and area under the curve (AUC) were extracted and synthesized. Eleven studies involving 1916 patients were included in the analysis. The pooled results revealed a sensitivity of 0.740 (95% CI: 0.673-0.808), specificity of 0.813 (95% CI: 0.729-0.898), and accuracy of 0.746 (95% CI: 0.679-0.813). The area under the curve (AUC) for diagnosis was 0.793 (95% CI: 0.719-0.866), and for classification, it was 0.899 (95% CI: 0.846-0.951). The sensitivity for segmentation was found to be 0.755 (95% CI: 0.704-0.805). AI-based models show strong potential in enhancing the diagnostic accuracy and clinical decision-making process for CPs. These findings support the use of AI tools for more reliable preoperative assessment, leading to better treatment planning and patient outcomes. Further research with larger datasets is needed to optimize and validate AI applications in clinical practice.

MRI-based multimodal AI model enables prediction of recurrence risk and adjuvant therapy in breast cancer.

Yu Y, Ren W, Mao L, Ouyang W, Hu Q, Yao Q, Tan Y, He Z, Ban X, Hu H, Lin R, Wang Z, Chen Y, Wu Z, Chen K, Ouyang J, Li T, Zhang Z, Liu G, Chen X, Li Z, Duan X, Wang J, Yao H

pubmed logopapersMay 7 2025
Timely intervention and improved prognosis for breast cancer patients rely on early metastasis risk detection and accurate treatment predictions. This study introduces an advanced multimodal MRI and AI-driven 3D deep learning model, termed the 3D-MMR-model, designed to predict recurrence risk in non-metastatic breast cancer patients. We conducted a multicenter study involving 1199 non-metastatic breast cancer patients from four institutions in China, with comprehensive MRI and clinical data retrospectively collected. Our model employed multimodal-data fusion, utilizing contrast-enhanced T1-weighted imaging (T1 + C) and T2-weighted imaging (T2WI) volumes, processed through a modified 3D-UNet for tumor segmentation and a DenseNet121-based architecture for disease-free survival (DFS) prediction. Additionally, we performed RNA-seq analysis to delve further into the relationship between concentrated hotspots within the tumor region and the tumor microenvironment. The 3D-MR-model demonstrated superior predictive performance, with time-dependent ROC analysis yielding AUC values of 0.90, 0.89, and 0.88 for 2-, 3-, and 4-year DFS predictions, respectively, in the training cohort. External validation cohorts corroborated these findings, highlighting the model's robustness across diverse clinical settings. Integration of clinicopathological features further enhanced the model's accuracy, with a multimodal approach significantly improving risk stratification and decision-making in clinical practice. Visualization techniques provided insights into the decision-making process, correlating predictions with tumor microenvironment characteristics. In summary, the 3D-MMR-model represents a significant advancement in breast cancer prognosis, combining cutting-edge AI technology with multimodal imaging to deliver precise and clinically relevant predictions of recurrence risk. This innovative approach holds promise for enhancing patient outcomes and guiding individualized treatment plans in breast cancer care.

Interpretable MRI-Based Deep Learning for Alzheimer's Risk and Progression

Lu, B., Chen, Y.-R., Li, R.-X., Zhang, M.-K., Yan, S.-Z., Chen, G.-Q., Castellanos, F. X., Thompson, P. M., Lu, J., Han, Y., Yan, C.-G.

medrxiv logopreprintMay 7 2025
Timely intervention for Alzheimers disease (AD) requires early detection. The development of immunotherapies targeting amyloid-beta and tau underscores the need for accessible, time-efficient biomarkers for early diagnosis. Here, we directly applied our previously developed MRI-based deep learning model for AD to the large Chinese SILCODE cohort (722 participants, 1,105 brain MRI scans). The model -- initially trained on North American data -- demonstrated robust cross-ethnic generalization, without any retraining or fine-tuning, achieving an AUC of 91.3% in AD classification with a sensitivity of 95.2%. It successfully identified 86.7% of individuals at risk of AD progression more than 5 years in advance. Individuals identified as high-risk exhibited significantly shorter median progression times. By integrating an interpretable deep learning brain risk map approach, we identified AD brain subtypes, including an MCI subtype associated with rapid cognitive decline. The models risk scores showed significant correlations with cognitive measures and plasma biomarkers, such as tau proteins and neurofilament light chain (NfL). These findings underscore the exceptional generalizability and clinical utility of MRI-based deep learning models, especially in large and diverse populations, offering valuable tools for early therapeutic intervention. The model has been made open-source and deployed to a free online website for AD risk prediction, to assist in early screening and intervention.

Neuroanatomical-Based Machine Learning Prediction of Alzheimer's Disease Across Sex and Age

Jogeshwar, B. K., Lu, S., Nephew, B. C.

medrxiv logopreprintMay 7 2025
Alzheimers Disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and memory loss. In 2024, in the US alone, it affected approximately 1 in 9 people aged 65 and older, equivalent to 6.9 million individuals. Early detection and accurate AD diagnosis are crucial for improving patient outcomes. Magnetic resonance imaging (MRI) has emerged as a valuable tool for examining brain structure and identifying potential AD biomarkers. This study performs predictive analyses by employing machine learning techniques to identify key brain regions associated with AD using numerical data derived from anatomical MRI scans, going beyond standard statistical methods. Using the Random Forest Algorithm, we achieved 92.87% accuracy in detecting AD from Mild Cognitive Impairment and Cognitive Normals. Subgroup analyses across nine sex- and age-based cohorts (69-76 years, 77-84 years, and unified 69-84 years) revealed the hippocampus, amygdala, and entorhinal cortex as consistent top-rank predictors. These regions showed distinct volume reductions across age and sex groups, reflecting distinct age- and sex-related neuroanatomical patterns. For instance, younger males and females (aged 69-76) exhibited volume decreases in the right hippocampus, suggesting its importance in the early stages of AD. Older males (77-84) showed substantial volume decreases in the left inferior temporal cortex. Additionally, the left middle temporal cortex showed decreased volume in females, suggesting a potential female-specific influence, while the right entorhinal cortex may have a male-specific impact. These age-specific sex differences could inform clinical research and treatment strategies, aiding in identifying neuroanatomical markers and therapeutic targets for future clinical interventions.

An imageless magnetic resonance framework for fast and cost-effective decision-making

Alba González-Cebrián, Pablo García-Cristóbal, Fernando Galve, Efe Ilıcak, Viktor Van Der Valk, Marius Staring, Andrew Webb, Joseba Alonso

arxiv logopreprintMay 7 2025
Magnetic Resonance Imaging (MRI) is the gold standard in countless diagnostic procedures, yet hardware complexity, long scans, and cost preclude rapid screening and point-of-care use. We introduce Imageless Magnetic Resonance Diagnosis (IMRD), a framework that bypasses k-space sampling and image reconstruction by analyzing raw one-dimensional MR signals. We identify potentially impactful embodiments where IMRD requires only optimized pulse sequences for time-domain contrast, minimal low-field hardware, and pattern recognition algorithms to answer clinical closed queries and quantify lesion burden. As a proof of concept, we simulate multiple sclerosis lesions in silico within brain phantoms and deploy two extremely fast protocols (approximately 3 s), with and without spatial information. A 1D convolutional neural network achieves AUC close to 0.95 for lesion detection and R2 close to 0.99 for volume estimation. We also perform robustness tests under reduced signal-to-noise ratio, partial signal omission, and relaxation-time variability. By reframing MR signals as direct diagnostic metrics, IMRD paves the way for fast, low-cost MR screening and monitoring in resource-limited environments.

Enhancing Breast Cancer Detection Through Optimized Thermal Image Analysis Using PRMS-Net Deep Learning Approach.

Khan M, Su'ud MM, Alam MM, Karimullah S, Shaik F, Subhan F

pubmed logopapersMay 6 2025
Breast cancer has remained one of the most frequent and life-threatening cancers in females globally, putting emphasis on better diagnostics in its early stages to solve the problem of therapy effectiveness and survival. This work enhances the assessment of breast cancer by employing progressive residual networks (PRN) and ResNet-50 within the framework of Progressive Residual Multi-Class Support Vector Machine-Net. Built on concepts of deep learning, this creative integration optimizes feature extraction and raises the bar for classification effectiveness, earning an almost perfect 99.63% on our tests. These findings indicate that PRMS-Net can serve as an efficient and reliable diagnostic tool for early breast cancer detection, aiding radiologists in improving diagnostic accuracy and reducing false positives. The separation of the data into different segments is possible to determine the architecture's reliability using the fivefold cross-validation approach. The total variability of precision, recall, and F1 scores clearly depicted in the box plot also endorse the competency of the model for marking proper sensitivity and specificity-highly required for combating false positive and false negative cases in real clinical practice. The evaluation of error distribution strengthens the model's rationale by giving validation of practical application in medical contexts of image processing. The high levels of feature extraction sensitivity together with highly sophisticated classification methods make PRMS-Net a powerful tool that can be used in improving the early detection of breast cancer and subsequent patient prognosis.

Multi-task learning for joint prediction of breast cancer histological indicators in dynamic contrast-enhanced magnetic resonance imaging.

Sun R, Li X, Han B, Xie Y, Nie S

pubmed logopapersMay 6 2025
Achieving efficient analysis of multiple pathological indicators has great significance for breast cancer prognosis and therapeutic decision-making. In this study, we aim to explore a deep multi-task learning (MTL) framework for collaborative prediction of histological grade and proliferation marker (Ki-67) status in breast cancer using multi-phase dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). In the novel design of hybrid multi-task architecture (HMT-Net), co-representative features are explicitly distilled using a feature extraction backbone. A customized prediction network is then introduced to perform soft-parameter sharing between two correlated tasks. Specifically, task-common and task-specific knowledge is transmitted into tower layers for informative interactions. Furthermore, low-level feature maps containing tumor edges and texture details are recaptured by a hard-parameter sharing branch, which are then incorporated into the tower layer for each subtask. Finally, the probabilities of two histological indicators, predicted in the multi-phase DCE-MRI, are separately fused using a decision-level fusion strategy. Experimental results demonstrate that the proposed HMT-Net achieves optimal discriminative performance over other recent MTL architectures and deep models based on single image series, with the area under the receiver operating characteristic curve of 0.908 for tumor grade and 0.694 for Ki-67 status. Benefiting from the innovative HMT-Net, our proposed method elucidates its strong robustness and flexibility in the collaborative prediction task of breast biomarkers. Multi-phase DCE-MRI is expected to contribute valuable dynamic information for breast cancer pathological assessment in a non-invasive manner.

New Targets for Imaging in Nuclear Medicine.

Brink A, Paez D, Estrada Lobato E, Delgado Bolton RC, Knoll P, Korde A, Calapaquí Terán AK, Haidar M, Giammarile F

pubmed logopapersMay 6 2025
Nuclear medicine is rapidly evolving with new molecular imaging targets and advanced computational tools that promise to enhance diagnostic precision and personalized therapy. Recent years have seen a surge in novel PET and SPECT tracers, such as those targeting prostate-specific membrane antigen (PSMA) in prostate cancer, fibroblast activation protein (FAP) in tumor stroma, and tau protein in neurodegenerative disease. These tracers enable more specific visualization of disease processes compared to traditional agents, fitting into a broader shift toward precision imaging in oncology and neurology. In parallel, artificial intelligence (AI) and machine learning techniques are being integrated into tracer development and image analysis. AI-driven methods can accelerate radiopharmaceutical discovery, optimize pharmacokinetic properties, and assist in interpreting complex imaging datasets. This editorial provides an expanded overview of emerging imaging targets and techniques, including theranostic applications that pair diagnosis with radionuclide therapy, and examines how AI is augmenting nuclear medicine. We discuss the implications of these advancements within the field's historical trajectory and address the regulatory, manufacturing, and clinical challenges that must be navigated. Innovations in molecular targeting and AI are poised to transform nuclear medicine practice, enabling more personalized diagnostics and radiotheranostic strategies in the era of precision healthcare.

Opinions and preferences regarding artificial intelligence use in healthcare delivery: results from a national multi-site survey of breast imaging patients.

Dontchos BN, Dodelzon K, Bhole S, Edmonds CE, Mullen LA, Parikh JR, Daly CP, Epling JA, Christensen S, Grimm LJ

pubmed logopapersMay 6 2025
Artificial intelligence (AI) utilization is growing, but patient perceptions of AI are unclear. Our objective was to understand patient perceptions of AI through a multi-site survey of breast imaging patients. A 36-question survey was distributed to eight US practices (6 academic, 2 non-academic) from October 2023 through October 2024. This manuscript analyzes a subset of questions from the survey addressing digital health literacy and attitudes towards AI in medicine and breast imaging specifically. Multivariable analysis compared responses by respondent demographics. A total of 3,532 surveys were collected (response rate: 69.9%, 3,532/5053). Median respondent age was 55 years (IQR 20). Most respondents were White (73.0%, 2579/3532) and had completed college (77.3%, 2732/3532). Overall, respondents were undecided (range: 43.2%-50.8%) regarding questions about general perceptions of AI in healthcare. Respondents with higher electronic health literacy, more education, and younger age were significantly more likely to consider it useful to use utilize AI for aiding medical tasks (all p<0.001). In contrast, respondents with lower electronic health literacy and less education were significantly more likely to indicate it was a bad idea for AI to perform medical tasks (p<0.001). Non-White patients were more likely to express concerns that AI will not work as well for some groups compared to others (p<0.05). Overall, favorable opinions of AI use for medical tasks were associated with younger age, more education, and higher electronic health literacy. As AI is increasingly implemented into clinical workflows, it is important to educate patients and provide transparency to build patient understanding and trust.

Machine learning algorithms integrating positron emission tomography/computed tomography features to predict pathological complete response after neoadjuvant chemoimmunotherapy in lung cancer.

Sheng Z, Ji S, Chen Y, Mi Z, Yu H, Zhang L, Wan S, Song N, Shen Z, Zhang P

pubmed logopapersMay 6 2025
Reliable methods for predicting pathological complete response (pCR) in non-small cell lung cancer (NSCLC) patients undergoing neoadjuvant chemoimmunotherapy are still under exploration. Although Fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography (18F-FDG PET/CT) features reflect tumour response, their utility in predicting pCR remains controversial. This retrospective analysis included NSCLC patients who received neoadjuvant chemoimmunotherapy followed by 18F-FDG PET/CT imaging at Shanghai Pulmonary Hospital from October 2019 to August 2024. Eligible patients were randomly divided into training and validation cohort at a 7:3 ratio. Relevant 18F-FDG PET/CT features were evaluated as individual predictors and incorporated into 5 machine learning (ML) models. Model performance was assessed using the area under the receiver operating characteristic curve (AUC), and Shapley additive explanation was applied for model interpretation. A total of 205 patients were included, with 91 (44.4%) achieving pCR. Post-treatment tumour maximum standardized uptake value (SUVmax) demonstrated the highest predictive performance among individual predictors, achieving an AUC of 0.72 (95% CI 0.65-0.79), while ΔT SUVmax achieved an AUC of 0.65 (95% CI 0.53-0.77). The Light Gradient Boosting Machine algorithm outperformed other models and individual predictors, achieving an average AUC of 0.87 (95% CI 0.78-0.97) in training cohort and 0.83 (95% CI 0.72-0.94) in validation cohort. Shapley additive explanation analysis identified post-treatment tumour SUVmax and post-treatment nodal volume as key contributors. This ML models offer a non-invasive and effective approach for predicting pCR after neoadjuvant chemoimmunotherapy in NSCLC.
Page 90 of 94940 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.