Sort by:
Page 80 of 1221217 results

DWI-based Biologically Interpretable Radiomic Nomogram for Predicting 1- year Biochemical Recurrence after Radical Prostatectomy: A Deep Learning, Multicenter Study.

Niu X, Li Y, Wang L, Xu G

pubmed logopapersJun 10 2025
It is not rare to experience a biochemical recurrence (BCR) following radical prostatectomy (RP) for prostate cancer (PCa). It has been reported that early detection and management of BCR following surgery could improve survival in PCa. This study aimed to develop a nomogram integrating deep learning-based radiomic features and clinical parameters to predict 1-year BCR after RP and to examine the associations between radiomic scores and the tumor microenvironment (TME). In this retrospective multicenter study, two independent cohorts of patients (n = 349) who underwent RP after multiparametric magnetic resonance imaging (mpMRI) between January 2015 and January 2022 were included in the analysis. Single-cell RNA sequencing data from four prospectively enrolled participants were used to investigate the radiomic score-related TME. The 3D U-Net was trained and optimized for prostate cancer segmentation using diffusion-weighted imaging, and radiomic features of the target lesion were extracted. Predictive nomograms were developed via multivariate Cox proportional hazard regression analysis. The nomograms were assessed for discrimination, calibration, and clinical usefulness. In the development cohort, the clinical-radiomic nomogram had an AUC of 0.892 (95% confidence interval: 0.783--0.939), which was considerably greater than those of the radiomic signature and clinical model. The Hosmer-Lemeshow test demonstrated that the clinical-radiomic model performed well in both the development (P = 0.461) and validation (P = 0.722) cohorts. Decision curve analysis revealed that the clinical-radiomic nomogram displayed better clinical predictive usefulness than the clinical or radiomic signature alone in both cohorts. Radiomic scores were associated with a significant difference in the TME pattern. Our study demonstrated the feasibility of a DWI-based clinical-radiomic nomogram combined with deep learning for the prediction of 1-year BCR. The findings revealed that the radiomic score was associated with a distinctive tumor microenvironment.

Challenges and Advances in Classifying Brain Tumors: An Overview of Machine, Deep Learning, and Hybrid Approaches with Future Perspectives in Medical Imaging.

Alshomrani F

pubmed logopapersJun 10 2025
Accurate brain tumor classification is essential in neuro-oncology, as it directly informs treatment strategies and influences patient outcomes. This review comprehensively explores machine learning (ML) and deep learning (DL) models that enhance the accuracy and efficiency of brain tumor classification using medical imaging data, particularly Magnetic Resonance Imaging (MRI). As a noninvasive imaging technique, MRI plays a central role in detecting, segmenting, and characterizing brain tumors by providing detailed anatomical views that help distinguish various tumor types, including gliomas, meningiomas, and metastatic brain lesions. The review presents a detailed analysis of diverse ML approaches, from classical algorithms such as Support Vector Machines (SVM) and Decision Trees to advanced DL models, including Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and hybrid architectures that combine multiple techniques for improved performance. Through comparative analysis of recent studies across various datasets, the review evaluates these methods using metrics such as accuracy, sensitivity, specificity, and AUC-ROC, offering insights into their effectiveness and limitations. Significant challenges in the field are examined, including the scarcity of annotated datasets, computational complexity requirements, model interpretability issues, and barriers to clinical integration. The review proposes future directions to address these challenges, highlighting the potential of multi-modal imaging that combines MRI with other imaging modalities, explainable AI frameworks for enhanced model transparency, and privacy-preserving techniques for securing sensitive patient data. This comprehensive analysis demonstrates the transformative potential of ML and DL in advancing brain tumor diagnosis while emphasizing the necessity for continued research and innovation to overcome current limitations and ensure successful clinical implementation for improved patient care.

Arthroscopy-validated diagnostic performance of sub-5-min deep learning super-resolution 3T knee MRI in children and adolescents.

Vosshenrich J, Breit HC, Donners R, Obmann MM, Harder D, Ahlawat S, Walter SS, Serfaty A, Cantarelli Rodrigues T, Recht M, Stern SE, Fritz J

pubmed logopapersJun 10 2025
This study aims to determine the diagnostic performance of sub-5-min combined sixfold parallel imaging (PIx3)-simultaneous multislice (SMSx2)-accelerated deep learning (DL) super-resolution 3T knee MRI in children and adolescents. Children with painful knee conditions who underwent PIx3-SMSx2-accelerated DL super-resolution 3T knee MRI and arthroscopy between October 2022 and December 2023 were retrospectively included. Nine fellowship-trained musculoskeletal radiologists independently scored the MRI studies for image quality and the presence of artifacts (Likert scales, range: 1 = very bad/severe, 5 = very good/absent), as well as structural abnormalities. Interreader agreements and diagnostic performance testing was performed. Forty-four children (mean age: 15 ± 2 years; range: 9-17 years; 24 boys) who underwent knee MRI and arthroscopic surgery within 22 days (range, 2-133) were evaluated. Overall image quality was very good (median rating: 5 [IQR: 4-5]). Motion artifacts (5 [5-5]) and image noise (5 [4-5]) were absent. Arthroscopy-verified abnormalities were detected with good or better interreader agreement (κ ≥ 0.74). Sensitivity, specificity, accuracy, and AUC values were 100%, 84%, 93%, and 0.92, respectively, for anterior cruciate ligament tears; 71%, 97%, 93%, and 0.84 for medial meniscus tears; 65%, 100%, 86%, and 0.82 for lateral meniscus tears; 100%, 100%, 100%, and 1.00 for discoid lateral menisci; 100%, 95%, 96%, and 0.98 for medial patellofemoral ligament tears; and 55%, 100%, 98%, and 0.77 for articular cartilage defects. Clinical sub-5-min PIx3-SMSx2-accelerated DL super-resolution 3T knee MRI provides excellent image quality and high diagnostic performance for diagnosing internal derangement in children and adolescents.

Advancements and Applications of Hyperpolarized Xenon MRI for COPD Assessment in China.

Li H, Li H, Zhang M, Fang Y, Shen L, Liu X, Xiao S, Zeng Q, Zhou Q, Zhao X, Shi L, Han Y, Zhou X

pubmed logopapersJun 10 2025
Chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality in China, highlighting the importance of early diagnosis and ongoing monitoring for effective management. In recent years, hyperpolarized 129Xe MRI technology has gained significant clinical attention due to its ability to non-invasively and visually assess lung ventilation, microstructure, and gas exchange function. Its recent clinical approval in China, the United States and several European countries, represents a significant advancement in pulmonary imaging. This review provides an overview of the latest developments in hyperpolarized 129Xe MRI technology for COPD assessment in China. It covers the progress in instrument development, advanced imaging techniques, artificial intelligence-driven reconstruction methods, molecular imaging, and the application of this technology in both COPD patients and animal models. Furthermore, the review explores potential technical innovations in 129Xe MRI and discusses future directions for its clinical applications, aiming to address existing challenges and expand the technology's impact in clinical practice.

Uncovering Image-Driven Subtypes with Distinct Pathology and Clinical Course in Autopsy-Confirmed Four Repeat Tauopathies.

Satoh R, Sekiya H, Ali F, Clark HM, Utianski RL, Duffy JR, Machulda MM, Dickson DW, Josephs KA, Whitwell JL

pubmed logopapersJun 10 2025
The four-repeat (4R) tauopathies are a group of neurodegenerative diseases, including progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and globular glial tauopathy (GGT). This study aimed to characterize spatiotemporal atrophy progression using structural magnetic resonance imaging (MRI) and to examine its relationship with clinical course and neuropathology in a cohort of autopsy-confirmed 4R tauopathies. The study included 85 autopsied patients (54 with PSP, 28 with CBD, and 3 with GGT) who underwent multiple 3T MRI scans, as well as neuropsychological, neurological, and speech/language examinations, and standardized postmortem neuropathological evaluations. An unsupervised machine-learning algorithm, Subtype and Stage Inference (SuStaIn), was applied to the cross-sectional brain volumes to estimate spatiotemporal atrophy patterns and data-driven subtypes and stages in each patient. The relationships among estimated subtypes, pathological diagnoses, and longitudinal changes in clinical testing were examined. The SuStaIn algorithm identified 2 distinct subtypes: (1) the subcortical subtype, in which atrophy progresses from the midbrain to the cortex, and (2) the cortical subtype, in which atrophy progresses from the frontal cortex to the subcortical regions. The subcortical subtype was more associated with typical PSP, whereas the cortical subtype was more associated with atypical PSP with a cortical distribution of pathology and CBD (p < 0.001). The cortical subtype had a faster rate of change on the PSP Rating Scale than the subcortical subtype (p < 0.05). SuStaIn analysis revealed 2 MRI-driven subtypes with distinct spatiotemporal atrophy patterns, clinical courses, and neuropathology. Our findings contribute to a comprehensive and improved understanding of disease progression and its relationship to tau pathology in 4R tauopathies. ANN NEUROL 2025.

An Explainable Deep Learning Framework for Brain Stroke and Tumor Progression via MRI Interpretation

Rajan Das Gupta, Md Imrul Hasan Showmick, Mushfiqur Rahman Abir, Shanjida Akter, Md. Yeasin Rahat, Md. Jakir Hossen

arxiv logopreprintJun 10 2025
Early and accurate detection of brain abnormalities, such as tumors and strokes, is essential for timely intervention and improved patient outcomes. In this study, we present a deep learning-based system capable of identifying both brain tumors and strokes from MRI images, along with their respective stages. We have executed two groundbreaking strategies involving convolutional neural networks, MobileNet V2 and ResNet-50-optimized through transfer learning to classify MRI scans into five diagnostic categories. Our dataset, aggregated and augmented from various publicly available MRI sources, was carefully curated to ensure class balance and image diversity. To enhance model generalization and prevent overfitting, we applied dropout layers and extensive data augmentation. The models achieved strong performance, with training accuracy reaching 93\% and validation accuracy up to 88\%. While ResNet-50 demonstrated slightly better results, Mobile Net V2 remains a promising option for real-time diagnosis in low resource settings due to its lightweight architecture. This research offers a practical AI-driven solution for early brain abnormality detection, with potential for clinical deployment and future enhancement through larger datasets and multi modal inputs.

The RSNA Lumbar Degenerative Imaging Spine Classification (LumbarDISC) Dataset

Tyler J. Richards, Adam E. Flanders, Errol Colak, Luciano M. Prevedello, Robyn L. Ball, Felipe Kitamura, John Mongan, Maryam Vazirabad, Hui-Ming Lin, Anne Kendell, Thanat Kanthawang, Salita Angkurawaranon, Emre Altinmakas, Hakan Dogan, Paulo Eduardo de Aguiar Kuriki, Arjuna Somasundaram, Christopher Ruston, Deniz Bulja, Naida Spahovic, Jennifer Sommer, Sirui Jiang, Eduardo Moreno Judice de Mattos Farina, Eduardo Caminha Nunes, Michael Brassil, Megan McNamara, Johanna Ortiz, Jacob Peoples, Vinson L. Uytana, Anthony Kam, Venkata N. S. Dola, Daniel Murphy, David Vu, Dataset Contributor Group, Dataset Annotator Group, Competition Data Notebook Group, Jason F. Talbott

arxiv logopreprintJun 10 2025
The Radiological Society of North America (RSNA) Lumbar Degenerative Imaging Spine Classification (LumbarDISC) dataset is the largest publicly available dataset of adult MRI lumbar spine examinations annotated for degenerative changes. The dataset includes 2,697 patients with a total of 8,593 image series from 8 institutions across 6 countries and 5 continents. The dataset is available for free for non-commercial use via Kaggle and RSNA Medical Imaging Resource of AI (MIRA). The dataset was created for the RSNA 2024 Lumbar Spine Degenerative Classification competition where competitors developed deep learning models to grade degenerative changes in the lumbar spine. The degree of spinal canal, subarticular recess, and neural foraminal stenosis was graded at each intervertebral disc level in the lumbar spine. The images were annotated by expert volunteer neuroradiologists and musculoskeletal radiologists from the RSNA, American Society of Neuroradiology, and the American Society of Spine Radiology. This dataset aims to facilitate research and development in machine learning and lumbar spine imaging to lead to improved patient care and clinical efficiency.

Automated Diffusion Analysis for Non-Invasive Prediction of IDH Genotype in WHO Grade 2-3 Gliomas.

Wu J, Thust SC, Wastling SJ, Abdalla G, Benenati M, Maynard JA, Brandner S, Carrasco FP, Barkhof F

pubmed logopapersJun 10 2025
Glioma molecular characterization is essential for risk stratification and treatment planning. Noninvasive imaging biomarkers such as apparent diffusion coefficient (ADC) values have shown potential for predicting glioma genotypes. However, manual segmentation of gliomas is time-consuming and operator-dependent. To address this limitation, we aimed to establish a single-sequence-derived automatic ADC extraction pipeline using T2-weighted imaging to support glioma isocitrate dehydrogenase (IDH) genotyping. Glioma volumes from a hospital data set (University College London Hospitals; n=247) were manually segmented on T2-weighted MRI scans using ITK-Snap Toolbox and co-registered to ADC maps sequences using the FMRIB Linear Image Registration Tool in FSL, followed by ADC histogram extraction (Python). Separately, a nnUNet deep learning algorithm was trained to segment glioma volumes using T2w only from BraTS 2021 data (n=500, 80% training, 5% validation and 15% test split). nnUnet was then applied to the University College London Hospitals (UCLH) data for segmentation and ADC read-outs. Univariable logistic regression was used to test the performance manual and nnUNet derived ADC metrics for IDH status prediction. Statistical equivalence was tested (paired two-sided t-test). nnUnet segmentation achieved a median Dice of 0.85 on BraTS data, and 0.83 on UCLH data. For the best performing metric (rADCmean) the area under the receiver operating characteristic curve (AUC) for differentiating IDH-mutant from IDHwildtype gliomas was 0.82 (95% CI: 0.78-0.88), compared to the manual segmentation AUC 0.84 (95% CI: 0.77-0.89). For all ADC metrics, manually and nnUNet extracted ADC were statistically equivalent (p<0.01). nnUNet identified one area of glioma infiltration missed by human observers. In 0.8% gliomas, nnUnet missed glioma components. In 6% of cases, over-segmentation of brain remote from the tumor occurred (e.g. temporal poles). The T2w trained nnUnet algorithm achieved ADC readouts for IDH genotyping with a performance statistically equivalent to human observers. This approach could support rapid ADC based identification of glioblastoma at an early disease stage, even with limited input data. AUC = Area under the receiver operating characteristic curve, BraTS = The brain tumor segmentation challenge held by MICCAI, Dice = Dice Similarity Coefficient, IDH = Isocitrate dehydrogenase, mGBM = Molecular glioblastoma, ADCmin = Fifth ADC histogram percentile, ADCmean = Mean ADC value, ADCNAWM = ADC in the contralateral centrum semiovale normal white matter, rADCmin = Normalized ADCmin, VOI rADCmean = Normalized ADCmean.

Transfer learning for accurate brain tumor classification in MRI: a step forward in medical diagnostics.

Khan MA, Hussain MZ, Mehmood S, Khan MF, Ahmad M, Mazhar T, Shahzad T, Saeed MM

pubmed logopapersJun 9 2025
Brain tumor classification is critical for therapeutic applications that benefit from computer-aided diagnostics. Misdiagnosing a brain tumor can significantly reduce a patient's chances of survival, as it may lead to ineffective treatments. This study proposes a novel approach for classifying brain tumors in MRI images using Transfer Learning (TL) with state-of-the-art deep learning models: AlexNet, MobileNetV2, and GoogleNet. Unlike previous studies that often focus on a single model, our work comprehensively compares these architectures, fine-tuned specifically for brain tumor classification. We utilize a publicly available dataset of 4,517 MRI scans, consisting of three prevalent types of brain tumors-glioma (1,129 images), meningioma (1,134 images), and pituitary tumors (1,138 images)-as well as 1,116 images of normal brains (no tumor). Our approach addresses key research gaps, including class imbalance, through data augmentation and model efficiency, leveraging lightweight architectures like MobileNetV2. The GoogleNet model achieves the highest classification accuracy of 99.2%, outperforming previous studies using the same dataset. This demonstrates the potential of our approach to assist physicians in making rapid and precise decisions, thereby improving patient outcomes. The results highlight the effectiveness of TL in medical diagnostics and its potential for real-world clinical deployment. This study advances the field of brain tumor classification and provides a robust framework for future research in medical image analysis.

A Dynamic Contrast-Enhanced MRI-Based Vision Transformer Model for Distinguishing HER2-Zero, -Low, and -Positive Expression in Breast Cancer and Exploring Model Interpretability.

Zhang X, Shen YY, Su GH, Guo Y, Zheng RC, Du SY, Chen SY, Xiao Y, Shao ZM, Zhang LN, Wang H, Jiang YZ, Gu YJ, You C

pubmed logopapersJun 9 2025
Novel antibody-drug conjugates highlight the benefits for breast cancer patients with low human epidermal growth factor receptor 2 (HER2) expression. This study aims to develop and validate a Vision Transformer (ViT) model based on dynamic contrast-enhanced MRI (DCE-MRI) to classify HER2-zero, -low, and -positive breast cancer patients and to explore its interpretability. The model is trained and validated on early enhancement MRI images from 708 patients in the FUSCC cohort and tested on 80 and 101 patients in the GFPH cohort and FHCMU cohort, respectively. The ViT model achieves AUCs of 0.80, 0.73, and 0.71 in distinguishing HER2-zero from HER2-low/positive tumors across the validation set of the FUSCC cohort and the two external cohorts. Furthermore, the model effectively classifies HER2-low and HER2-positive cases, with AUCs of 0.86, 0.80, and 0.79. Transcriptomics analysis identifies significant biological differences between HER2-low and HER2-positive patients, particularly in immune-related pathways, suggesting potential therapeutic targets. Additionally, Cox regression analysis demonstrates that the prediction score is an independent prognostic factor for overall survival (HR, 2.52; p = 0.007). These findings provide a non-invasive approach for accurately predicting HER2 expression, enabling more precise patient stratification to guide personalized treatment strategies. Further prospective studies are warranted to validate its clinical utility.
Page 80 of 1221217 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.