Uncovering Image-Driven Subtypes with Distinct Pathology and Clinical Course in Autopsy-Confirmed Four Repeat Tauopathies.
Authors
Affiliations (4)
Affiliations (4)
- Department of Radiology, Mayo Clinic, Rochester, MN.
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL.
- Department of Neurology, Mayo Clinic, Rochester, MN.
- Department of Psychology and Psychiatry, Mayo Clinic, Rochester, MN.
Abstract
The four-repeat (4R) tauopathies are a group of neurodegenerative diseases, including progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and globular glial tauopathy (GGT). This study aimed to characterize spatiotemporal atrophy progression using structural magnetic resonance imaging (MRI) and to examine its relationship with clinical course and neuropathology in a cohort of autopsy-confirmed 4R tauopathies. The study included 85 autopsied patients (54 with PSP, 28 with CBD, and 3 with GGT) who underwent multiple 3T MRI scans, as well as neuropsychological, neurological, and speech/language examinations, and standardized postmortem neuropathological evaluations. An unsupervised machine-learning algorithm, Subtype and Stage Inference (SuStaIn), was applied to the cross-sectional brain volumes to estimate spatiotemporal atrophy patterns and data-driven subtypes and stages in each patient. The relationships among estimated subtypes, pathological diagnoses, and longitudinal changes in clinical testing were examined. The SuStaIn algorithm identified 2 distinct subtypes: (1) the subcortical subtype, in which atrophy progresses from the midbrain to the cortex, and (2) the cortical subtype, in which atrophy progresses from the frontal cortex to the subcortical regions. The subcortical subtype was more associated with typical PSP, whereas the cortical subtype was more associated with atypical PSP with a cortical distribution of pathology and CBD (p < 0.001). The cortical subtype had a faster rate of change on the PSP Rating Scale than the subcortical subtype (p < 0.05). SuStaIn analysis revealed 2 MRI-driven subtypes with distinct spatiotemporal atrophy patterns, clinical courses, and neuropathology. Our findings contribute to a comprehensive and improved understanding of disease progression and its relationship to tau pathology in 4R tauopathies. ANN NEUROL 2025.