Sort by:
Page 1 of 13 results

Artificial intelligence in radiology: 173 commercially available products and their scientific evidence.

Antonissen N, Tryfonos O, Houben IB, Jacobs C, de Rooij M, van Leeuwen KG

pubmed logopapersJul 24 2025
To assess changes in peer-reviewed evidence on commercially available radiological artificial intelligence (AI) products from 2020 to 2023, as a follow-up to a 2020 review of 100 products. A literature review was conducted, covering January 2015 to March 2023, focusing on CE-certified radiological AI products listed on www.healthairegister.com . Papers were categorised using the hierarchical model of efficacy: technical/diagnostic accuracy (levels 1-2), clinical decision-making and patient outcomes (levels 3-5), or socio-economic impact (level 6). Study features such as design, vendor independence, and multicentre/multinational data usage were also examined. By 2023, 173 CE-certified AI products from 90 vendors were identified, compared to 100 products in 2020. Products with peer-reviewed evidence increased from 36% to 66%, supported by 639 papers (up from 237). Diagnostic accuracy studies (level 2) remained predominant, though their share decreased from 65% to 57%. Studies addressing higher-efficacy levels (3-6) remained constant at 22% and 24%, with the number of products supported by such evidence increasing from 18% to 31%. Multicentre studies rose from 30% to 41% (p < 0.01). However, vendor-independent studies decreased (49% to 45%), as did multinational studies (15% to 11%) and prospective designs (19% to 16%), all with p > 0.05. The increase in peer-reviewed evidence and higher levels of evidence per product indicate maturation in the radiological AI market. However, the continued focus on lower-efficacy studies and reductions in vendor independence, multinational data, and prospective designs highlight persistent challenges in establishing unbiased, real-world evidence. Question Evaluating advancements in peer-reviewed evidence for CE-certified radiological AI products is crucial to understand their clinical adoption and impact. Findings CE-certified AI products with peer-reviewed evidence increased from 36% in 2020 to 66% in 2023, but the proportion of higher-level evidence papers (~24%) remained unchanged. Clinical relevance The study highlights increased validation of radiological AI products but underscores a continued lack of evidence on their clinical and socio-economic impact, which may limit these tools' safe and effective implementation into clinical workflows.

Motion artifacts and image quality in stroke MRI: associated factors and impact on AI and human diagnostic accuracy.

Krag CH, Müller FC, Gandrup KL, Andersen MB, Møller JM, Liu ML, Rud A, Krabbe S, Al-Farra L, Nielsen M, Kruuse C, Boesen MP

pubmed logopapersJul 15 2025
To assess the prevalence of motion artifacts and the factors associated with them in a cohort of suspected stroke patients, and to determine their impact on diagnostic accuracy for both AI and radiologists. This retrospective cross-sectional study included brain MRI scans of consecutive adult suspected stroke patients from a non-comprehensive Danish stroke center between January and April 2020. An expert neuroradiologist identified acute ischemic, hemorrhagic, and space-occupying lesions as references. Two blinded radiology residents rated MRI image quality and motion artifacts. The diagnostic accuracy of a CE-marked deep learning tool was compared to that of radiology reports. Multivariate analysis examined associations between patient characteristics and motion artifacts. 775 patients (68 years ± 16, 420 female) were included. Acute ischemic, hemorrhagic, and space-occupying lesions were found in 216 (27.9%), 12 (1.5%), and 20 (2.6%). Motion artifacts were present in 57 (7.4%). Increasing age (OR per decade, 1.60; 95% CI: 1.26, 2.09; p < 0.001) and limb motor symptoms (OR, 2.36; 95% CI: 1.32, 4.20; p = 0.003) were independently associated with motion artifacts in multivariate analysis. Motion artifacts significantly reduced the accuracy of detecting hemorrhage. This reduction was greater for the AI tool (from 88 to 67%; p < 0.001) than for radiology reports (from 100 to 93%; p < 0.001). Ischemic and space-occupying lesion detection was not significantly affected. Motion artifacts are common in suspected stroke patients, particularly in the elderly and patients with motor symptoms, reducing accuracy for hemorrhage detection by both AI and radiologists. Question Motion artifacts reduce the quality of MRI scans, but it is unclear which factors are associated with them and how they impact diagnostic accuracy. Findings Motion artifacts occurred in 7% of suspected stroke MRI scans, associated with higher patient age and motor symptoms, lowering hemorrhage detection by AI and radiologists. Clinical relevance Motion artifacts in stroke brain MRIs significantly reduce the diagnostic accuracy of human and AI detection of intracranial hemorrhages. Elderly patients and those with motor symptoms may benefit from a greater focus on motion artifact prevention and reduction.

Advancements and Applications of Hyperpolarized Xenon MRI for COPD Assessment in China.

Li H, Li H, Zhang M, Fang Y, Shen L, Liu X, Xiao S, Zeng Q, Zhou Q, Zhao X, Shi L, Han Y, Zhou X

pubmed logopapersJun 10 2025
Chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality in China, highlighting the importance of early diagnosis and ongoing monitoring for effective management. In recent years, hyperpolarized 129Xe MRI technology has gained significant clinical attention due to its ability to non-invasively and visually assess lung ventilation, microstructure, and gas exchange function. Its recent clinical approval in China, the United States and several European countries, represents a significant advancement in pulmonary imaging. This review provides an overview of the latest developments in hyperpolarized 129Xe MRI technology for COPD assessment in China. It covers the progress in instrument development, advanced imaging techniques, artificial intelligence-driven reconstruction methods, molecular imaging, and the application of this technology in both COPD patients and animal models. Furthermore, the review explores potential technical innovations in 129Xe MRI and discusses future directions for its clinical applications, aiming to address existing challenges and expand the technology's impact in clinical practice.
Page 1 of 13 results
Show
per page
1

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.