Sort by:
Page 79 of 2252246 results

SMART MRS: A Simulated MEGA-PRESS ARTifacts toolbox for GABA-edited MRS.

Bugler H, Shamaei A, Souza R, Harris AD

pubmed logopapersJun 8 2025
To create a Python-based toolbox to simulate commonly occurring artifacts for single voxel gamma-aminobutyric acid (GABA)-edited MRS data. The toolbox was designed to maximize user flexibility and contains artifact, applied, input/output (I/O), and support functions. The artifact functions can produce spurious echoes, eddy currents, nuisance peaks, line broadening, baseline contamination, linear frequency drifts, and frequency and phase shift artifacts. Applied functions combine or apply specific parameter values to produce recognizable effects such as lipid peak and motion contamination. I/O and support functions provide additional functionality to accommodate different kinds of input data (MATLAB FID-A.mat files, NIfTI-MRS files), which vary by domain (time vs. frequency), MRS data type (e.g., edited vs. non-edited) and scale. A frequency and phase correction machine learning model experiment trained on corrupted simulated data and validated on in vivo data is shown to highlight the utility of our toolbox. Data simulated from the toolbox are complementary for research applications, as demonstrated by training a frequency and phase correction deep learning model that is applied to in vivo data containing artifacts. Visual assessment also confirms the resemblance of simulated artifacts compared to artifacts found in in vivo data. Our easy to install Python artifact simulated toolbox SMART_MRS is useful to enhance the diversity and quality of existing simulated edited-MRS data and is complementary to existing MRS simulation software.

A Narrative Review on Large AI Models in Lung Cancer Screening, Diagnosis, and Treatment Planning

Jiachen Zhong, Yiting Wang, Di Zhu, Ziwei Wang

arxiv logopreprintJun 8 2025
Lung cancer remains one of the most prevalent and fatal diseases worldwide, demanding accurate and timely diagnosis and treatment. Recent advancements in large AI models have significantly enhanced medical image understanding and clinical decision-making. This review systematically surveys the state-of-the-art in applying large AI models to lung cancer screening, diagnosis, prognosis, and treatment. We categorize existing models into modality-specific encoders, encoder-decoder frameworks, and joint encoder architectures, highlighting key examples such as CLIP, BLIP, Flamingo, BioViL-T, and GLoRIA. We further examine their performance in multimodal learning tasks using benchmark datasets like LIDC-IDRI, NLST, and MIMIC-CXR. Applications span pulmonary nodule detection, gene mutation prediction, multi-omics integration, and personalized treatment planning, with emerging evidence of clinical deployment and validation. Finally, we discuss current limitations in generalizability, interpretability, and regulatory compliance, proposing future directions for building scalable, explainable, and clinically integrated AI systems. Our review underscores the transformative potential of large AI models to personalize and optimize lung cancer care.

Simultaneous Segmentation of Ventricles and Normal/Abnormal White Matter Hyperintensities in Clinical MRI using Deep Learning

Mahdi Bashiri Bawil, Mousa Shamsi, Abolhassan Shakeri Bavil

arxiv logopreprintJun 8 2025
Multiple sclerosis (MS) diagnosis and monitoring rely heavily on accurate assessment of brain MRI biomarkers, particularly white matter hyperintensities (WMHs) and ventricular changes. Current segmentation approaches suffer from several limitations: they typically segment these structures independently despite their pathophysiological relationship, struggle to differentiate between normal and pathological hyperintensities, and are poorly optimized for anisotropic clinical MRI data. We propose a novel 2D pix2pix-based deep learning framework for simultaneous segmentation of ventricles and WMHs with the unique capability to distinguish between normal periventricular hyperintensities and pathological MS lesions. Our method was developed and validated on FLAIR MRI scans from 300 MS patients. Compared to established methods (SynthSeg, Atlas Matching, BIANCA, LST-LPA, LST-LGA, and WMH-SynthSeg), our approach achieved superior performance for both ventricle segmentation (Dice: 0.801+/-0.025, HD95: 18.46+/-7.1mm) and WMH segmentation (Dice: 0.624+/-0.061, precision: 0.755+/-0.161). Furthermore, our method successfully differentiated between normal and abnormal hyperintensities with a Dice coefficient of 0.647. Notably, our approach demonstrated exceptional computational efficiency, completing end-to-end processing in approximately 4 seconds per case, up to 36 times faster than baseline methods, while maintaining minimal resource requirements. This combination of improved accuracy, clinically relevant differentiation capability, and computational efficiency addresses critical limitations in current neuroimaging analysis, potentially enabling integration into routine clinical workflows and enhancing MS diagnosis and monitoring.

Transfer Learning and Explainable AI for Brain Tumor Classification: A Study Using MRI Data from Bangladesh

Shuvashis Sarker

arxiv logopreprintJun 8 2025
Brain tumors, regardless of being benign or malignant, pose considerable health risks, with malignant tumors being more perilous due to their swift and uncontrolled proliferation, resulting in malignancy. Timely identification is crucial for enhancing patient outcomes, particularly in nations such as Bangladesh, where healthcare infrastructure is constrained. Manual MRI analysis is arduous and susceptible to inaccuracies, rendering it inefficient for prompt diagnosis. This research sought to tackle these problems by creating an automated brain tumor classification system utilizing MRI data obtained from many hospitals in Bangladesh. Advanced deep learning models, including VGG16, VGG19, and ResNet50, were utilized to classify glioma, meningioma, and various brain cancers. Explainable AI (XAI) methodologies, such as Grad-CAM and Grad-CAM++, were employed to improve model interpretability by emphasizing the critical areas in MRI scans that influenced the categorization. VGG16 achieved the most accuracy, attaining 99.17%. The integration of XAI enhanced the system's transparency and stability, rendering it more appropriate for clinical application in resource-limited environments such as Bangladesh. This study highlights the capability of deep learning models, in conjunction with explainable artificial intelligence (XAI), to enhance brain tumor detection and identification in areas with restricted access to advanced medical technologies.

MRI-mediated intelligent multimodal imaging system: from artificial intelligence to clinical imaging diagnosis.

Li Y, Wang J, Pan X, Shan Y, Zhang J

pubmed logopapersJun 8 2025
MRI, as a mature diagnostic method in clinical application, is favored by doctors and patients, there are also insurmountable bottleneck problems. AI strategies such as multimodal imaging integration and machine learning are used to build an intelligent multimodal imaging system based on MRI data to solve the unmet clinical needs in various medical environments. This review systematically discusses the development of MRI-guided multimodal imaging systems and the application of intelligent multimodal imaging systems integrated with artificial intelligence in the early diagnosis of brain and cardiovascular diseases. The safe and effective deployment of AI in clinical diagnostic equipment can help enhance early accurate diagnosis and personalized patient care.

A review of multimodal fusion-based deep learning for Alzheimer's disease.

Zhang R, Sheng J, Zhang Q, Wang J, Wang B

pubmed logopapersJun 7 2025
Alzheimer's Disease (AD) as one of the most prevalent neurodegenerative disorders worldwide, characterized by significant memory and cognitive decline in its later stages, severely impacting daily lives. Consequently, early diagnosis and accurate assessment are crucial for delaying disease progression. In recent years, multimodal imaging has gained widespread adoption in AD diagnosis and research, particularly the combined use of Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET). The complementarity of these modalities in structural and metabolic information offers a unique advantage for comprehensive disease understanding and precise diagnosis. With the rapid advancement of deep learning techniques, efficient fusion of MRI and PET multimodal data has emerged as a prominent research focus. This review systematically surveys the latest advancements in deep learning-based multimodal fusion of MRI and PET images for AD research, with a particular focus on studies published in the past five years (2021-2025). It first introduces the main sources of AD-related data, along with data preprocessing and feature extraction methods. Then, it summarizes performance metrics and multimodal fusion techniques. Next, it explores the application of various deep learning models and their variants in multimodal fusion tasks. Finally, it analyzes the key challenges currently faced in the field, including data scarcity and imbalance, inter-institutional data heterogeneity, etc., and discusses potential solutions and future research directions. This review aims to provide systematic guidance for researchers in the field of MRI and PET multimodal fusion, with the ultimate goal of advancing the development of early AD diagnosis and intervention strategies.

Current utilization and impact of AI LVO detection tools in acute stroke triage: a multicenter survey analysis.

Darkhabani Z, Ezzeldin R, Delora A, Kass-Hout O, Alderazi Y, Nguyen TN, El-Ghanem M, Anwoju T, Ali Z, Ezzeldin M

pubmed logopapersJun 7 2025
Artificial intelligence (AI) tools for large vessel occlusion (LVO) detection are increasingly used in acute stroke triage to expedite diagnosis and intervention. However, variability in access and workflow integration limits their potential impact. This study assessed current usage patterns, access disparities, and integration levels across U.S. stroke programs. Cross-sectional, web-based survey of 97 multidisciplinary stroke care providers from diverse institutions. Descriptive statistics summarized demographics, AI tool usage, access, and integration. Two-proportion Z-tests assessed differences across institutional types. Most respondents (97.9%) reported AI tool use, primarily Viz AI and Rapid AI, but only 62.1% consistently used them for triage prior to radiologist interpretation. Just 37.5% reported formal protocol integration, and 43.6% had designated personnel for AI alert response. Access varied significantly across departments, and in only 61.7% of programs did all relevant team members have access. Formal implementation of the AI detection tools did not differ based on the certification (z = -0.2; <i>p</i> = 0.4) or whether the program was academic or community-based (z =-0.3; <i>p</i> = 0.3). AI-enabled LVO detection tools have the potential to improve stroke care and patient outcomes by expediting workflows and reducing treatment delays. This survey effectively evaluated current utilization of these tools and revealed widespread adoption alongside significant variability in access, integration, and workflow standardization. Larger, more diverse samples are needed to validate these findings across different hospital types, and further prospective research is essential to determine how formal integration of AI tools can enhance stroke care delivery, reduce disparities, and improve clinical outcomes.

Diagnostic performance of lumbar spine CT using deep learning denoising to evaluate disc herniation and spinal stenosis.

Park S, Kang JH, Moon SG

pubmed logopapersJun 7 2025
To evaluate the diagnostic performance of lumbar spine CT using deep learning denoising (DLD CT) for detecting disc herniation and spinal stenosis. This retrospective study included 47 patients (229 intervertebral discs from L1/2 to L5/S1; 18 men and 29 women; mean age, 69.1 ± 10.9 years) who underwent lumbar spine CT and MRI within 1 month. CT images were reconstructed using filtered back projection (FBP) and denoised using a deep learning algorithm (ClariCT.AI). Three radiologists independently evaluated standard CT and DLD CT at an 8-week interval for the presence of disc herniation, central canal stenosis, and neural foraminal stenosis. Subjective image quality and diagnostic confidence were also assessed using five-point Likert scales. Standard CT and DLD CT were compared using MRI as a reference standard. DLD CT showed higher sensitivity (60% (70/117) vs. 44% (51/117); p < 0.001) and similar specificity (94% (534/570) vs. 94% (538/570); p = 0.465) for detecting disc herniation. Specificity for detecting spinal canal stenosis and neural foraminal stenosis was higher in DLD CT (90% (487/540) vs. 86% (466/540); p = 0.003, 94% (1202/1272) vs. 92% (1171/1272); p < 0.001), while sensitivity was comparable (81% (119/147) vs. 77% (113/147); p = 0.233, 83% (85/102) vs. 81% (83/102); p = 0.636). Image quality and diagnostic confidence were superior for DLD CT (all comparisons, p < 0.05). Compared to standard CT, DLD CT can improve diagnostic performance in detecting disc herniation and spinal stenosis with superior image quality and diagnostic confidence. Question The accurate diagnosis of disc herniation and spinal stenosis is limited on lumbar spine CT because of the low soft-tissue contrast. Findings Lumbar spine CT using deep learning denoising (DLD CT) demonstrated superior diagnostic performance in detecting disc herniation and spinal stenosis compared to standard CT. Clinical relevance DLD CT can be used as a simple and cost-effective screening test.

Automatic MRI segmentation of masticatory muscles using deep learning enables large-scale muscle parameter analysis.

Ten Brink RSA, Merema BJ, den Otter ME, Jensma ML, Witjes MJH, Kraeima J

pubmed logopapersJun 7 2025
Mandibular reconstruction to restore mandibular continuity often relies on patient-specific implants and virtual surgical planning, but current implant designs rarely consider individual biomechanical demands, which are critical for preventing complications such as stress shielding, screw loosening, and implant failure. The inclusion of patient-specific masticatory muscle parameters such as cross-sectional area, vectors, and volume could improve implant success, but manual segmentation of these parameters is time-consuming, limiting large-scale analyses. In this study, a deep learning model was trained for automatic segmentation of eight masticatory muscles on MRI images. Forty T1-weighted MRI scans were segmented manually or via pseudo-labelling for training. Training employed 5-fold cross-validation over 1000 epochs per fold and testing was done on 10 manually segmented scans. The model achieved a mean Dice similarity coefficient (DSC) of 0.88, intersection over union (IoU) of 0.79, precision of 0.87, and recall of 0.89, demonstrating high segmentation accuracy. These results indicate the feasibility of large-scale, reproducible analyses of muscle volumes, directions, and estimated forces. By integrating these parameters into implant design and surgical planning, this method offers a step forward in developing personalized surgical strategies that could improve postoperative outcomes in mandibular reconstruction. This brings the field closer to truly individualized patient care.

Simulating workload reduction with an AI-based prostate cancer detection pathway using a prediction uncertainty metric.

Fransen SJ, Bosma JS, van Lohuizen Q, Roest C, Simonis FFJ, Kwee TC, Yakar D, Huisman H

pubmed logopapersJun 7 2025
This study compared two uncertainty quantification (UQ) metrics to rule out prostate MRI scans with a high-confidence artificial intelligence (AI) prediction and investigated the resulting potential radiologist's workload reduction in a clinically significant prostate cancer (csPCa) detection pathway. This retrospective study utilized 1612 MRI scans from three institutes for csPCa (Gleason Grade Group ≥ 2) assessment. We compared the standard diagnostic pathway (radiologist reading) to an AI-based rule-out pathway in terms of efficacy and accuracy in diagnosing csPCa. In the rule-out pathway, 15 AI submodels (trained on 7756 cases) diagnosed each MRI scan, and any prediction deemed uncertain was referred to a radiologist for reading. We compared the mean (meanUQ) and variability (varUQ) of predictions using the DeLong test on the area under the receiver operating characteristic curves (AUROC). The level of workload reduction of the best UQ method was determined based on a maintained sensitivity at non-inferior specificity using the margins 0.05 and 0.10. The workload reduction of the proposed pathway was institute-specific: up to 20% at a 0.10 non-inferiority margin (p < 0.05) and non-significant workload reduction at a 0.05 margin. VarUQ-based rule out gave higher but non-significant AUROC scores than meanUQ in certain selected cases (+0.05 AUROC, p > 0.05). MeanUQ and varUQ showed promise in AI-based rule-out csPCa detection. Using varUQ in an AI-based csPCa detection pathway could reduce the number of scans radiologists need to read. The varying performance of the UQ rule-out indicates the need for institute-specific UQ thresholds. Question AI can autonomously assess prostate MRI scans with high certainty at a non-inferior performance compared to radiologists, potentially reducing the workload of radiologists. Findings The optimal ratio of AI-model and radiologist readings is institute-dependent and requires calibration. Clinical relevance Semi-autonomous AI-based prostate cancer detection with variational UQ scores shows promise in reducing the number of scans radiologists need to read.
Page 79 of 2252246 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.