CT-based machine learning model integrating intra- and peri-tumoral radiomics features for predicting occult lymph node metastasis in peripheral lung cancer.
Lu X, Liu F, E J, Cai X, Yang J, Wang X, Zhang Y, Sun B, Liu Y
Lu X, Liu F, E J, Cai X, Yang J, Wang X, Zhang Y, Sun B, Liu Y
Xue Z, Deng S, Yue Y, Chen C, Li Z, Yang Y, Sun S, Liu Y
Pan X, Wang C, Luo X, Dong Q, Sun H, Zhang W, Qu H, Deng R, Lin Z
Doering E, Hoenig MC, Cole JH, Drzezga A
Hao Y, Cheng C, Li J, Li H, Di X, Zeng X, Jin S, Han X, Liu C, Wang Q, Luo B, Zeng X, Li K
Seifert AC, Breit HC, Obmann MM, Korolenko A, Nickel MD, Fenchel M, Boll DT, Vosshenrich J
Li Q, Han R, Huang J, Liu CB, Zhao S, Ge L, Zheng H, Huang Z
Kevin Arias, Edwin Vargas, Kumar Vijay Mishra, Antonio Ortega, Henry Arguello
Venkatesh, R., Cherlin, T., Penn Medicine BioBank,, Ritchie, M. D., Guerraty, M., Verma, S. S.
Islam, S. R., He, W., Xie, Z., Zhi, D.
Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.
We respect your privacy. Unsubscribe at any time.