Back to all papers

Deep Learning-Enhanced Single Breath-Hold Abdominal MRI at 0.55 T-Technical Feasibility and Image Quality Assessment.

Authors

Seifert AC,Breit HC,Obmann MM,Korolenko A,Nickel MD,Fenchel M,Boll DT,Vosshenrich J

Affiliations (3)

  • Department of Radiology, University Hospital Basel, Basel, Switzerland (A.C.S., H.C.B., M.M.O., A.K., D.T.B., J.V.).
  • Research & Clinical Translation, Magnetic Resonance, Siemens Healthineers AG, Erlangen, Germany (M.D.N., M.F.).
  • Department of Radiology, University Hospital Basel, Basel, Switzerland (A.C.S., H.C.B., M.M.O., A.K., D.T.B., J.V.). Electronic address: [email protected].

Abstract

Inherently lower signal-to-noise ratios hamper the broad clinical use of low-field abdominal MRI. This study aimed to investigate the technical feasibility and image quality of deep learning (DL)-enhanced T2 HASTE and T1 VIBE-Dixon abdominal MRI at 0.55 T. From July 2024 to September 2024, healthy volunteers underwent conventional and DL-enhanced 0.55 T abdominal MRI, including conventional T2 HASTE, fat-suppressed T2 HASTE (HASTE FS), and T1 VIBE-Dixon acquisitions, and DL-enhanced single- (HASTE DL<sub>SBH</sub>) and multi-breath-hold HASTE (HASTE DL<sub>MBH</sub>), fat-suppressed single- (HASTE FS DL<sub>SBH</sub>) and multi-breath-hold HASTE (HASTE FS DL<sub>MBH</sub>), and T1 VIBE-Dixon (VIBE-Dixon<sub>DL</sub>) acquisitions. Three abdominal radiologists evaluated the scans for quality parameters and artifacts (Likert scale 1-5), and incidental findings. Interreader agreement and comparative analyses were conducted. 33 healthy volunteers (mean age: 30±4years) were evaluated. Image quality was better for single breath-hold DL-enhanced MRI (all P<0.001) with good or better interreader agreement (κ≥0.61), including T2 HASTE (HASTE DL<sub>SBH</sub>: 4 [IQR: 4-4] vs. HASTE: 3 [3-3]), T2 HASTE FS (4 [4-4] vs. 3 [3-3]), and T1 VIBE-Dixon (4 [4-5] vs. 4 [3-4]). Similarly, image noise and spatial resolution were better for DL-MRI scans (P<0.001). No quality differences were found between single- and multi-breath-hold HASTE DL or HASTE FS DL (both: 4 [4-4]; P>0.572). The number and size of incidental lesions were identical between techniques (16 lesions; mean diameter 8±5 mm; P=1.000). DL-based image reconstruction enables single breath-hold T2 HASTE and T1 VIBE-Dixon abdominal imaging at 0.55 T with better image quality than conventional MRI.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.