DCE-UNet: A Transformer-Based Fully Automated Segmentation Network for Multiple Adolescent Spinal Disorders in X-ray Images.
Authors
Affiliations (2)
Affiliations (2)
- Beijing Institute of Petrochemical Technology, Qingyuan North Road, No. 19, Daxing District, Beijing 102617, China, Beijing, 102617, CHINA.
- Beijing Institute of Petrochemical Technology, Qingyuan North Road, No. 19, Daxing District, Beijing 102617, China, Beijing, Beijing, 102617, CHINA.
Abstract
In recent years, spinal X-ray image segmentation has played a vital role in the computer-aided diagnosis of various adolescent spinal disorders. However, due to the complex morphology of lesions and the fact that most existing methods are tailored to single-disease scenarios, current segmentation networks struggle to balance local detail preservation and global structural understanding across different disease types. As a result, they often suffer from limited accuracy, insufficient robustness, and poor adaptability. To address these challenges, we propose a novel fully automated spinal segmentation network, DCE-UNet, which integrates the local modeling strength of convolutional neural networks (CNNs) with the global contextual awareness of Transformers. The network introduces several architectural and feature fusion innovations. Specifically, a lightweight Transformer module is incorporated in the encoder to model high-level semantic features and enhance global contextual understanding. In the decoder, a Rec-Block module combining residual convolution and channel attention is designed to improve feature reconstruction and multi-scale fusion during the upsampling process. Additionally, the downsampling feature extraction path integrates a novel DC-Block that fuses channel and spatial attention mechanisms, enhancing the network's ability to represent complex lesion structures. Experiments conducted on a self-constructed large-scale multi-disease adolescent spinal X-ray dataset demonstrate that DCE-UNet achieves a Dice score of 91.3%, a mean Intersection over Union (mIoU) of 84.1, and a Hausdorff Distance (HD) of 4.007, outperforming several state-of-the-art comparison networks. Validation on real segmentation tasks further confirms that DCE-UNet delivers consistently superior performance across various lesion regions, highlighting its strong adaptability to multiple pathologies and promising potential for clinical application.