Sort by:
Page 60 of 1651650 results

Generalizable medical image enhancement using structure-preserved diffusion models.

Chen L, Yu X, Li H, Lin H, Niu K, Li H

pubmed logopapersJun 25 2025
Clinical medical images often suffer from compromised quality, which negatively impacts the diagnostic process by both clinicians and AI algorithms. While GAN-based enhancement methods have been commonly developed in recent years, delicate model training is necessary due to issues with artifacts, mode collapse, and instability. Diffusion models have shown promise in generating high-quality images superior to GANs, but challenges in training data collection and domain gaps hinder applying them for medical image enhancement. Additionally, preserving fine structures in enhancing medical images with diffusion models is still an area that requires further exploration. To overcome these challenges, we propose structure-preserved diffusion models for generalizable medical image enhancement (GEDM). GEDM leverages joint supervision from enhancement and segmentation to boost structure preservation and generalizability. Specifically, synthetic data is used to collect high-low quality paired training data with structure masks, and the Laplace transform is employed to reduce domain gaps and introduce multi-scale conditions. GEDM conducts medical image enhancement and segmentation jointly, supervised by high-quality references and structure masks from the training data. Four datasets of two medical imaging modalities were collected to implement the experiments, where GEDM outperformed state-of-the-art methods in image enhancement, as well as follow-up medical analysis tasks.

Computed tomography-derived quantitative imaging biomarkers enable the prediction of disease manifestations and survival in patients with systemic sclerosis.

Sieren MM, Grasshoff H, Riemekasten G, Berkel L, Nensa F, Hosch R, Barkhausen J, Kloeckner R, Wegner F

pubmed logopapersJun 25 2025
Systemic sclerosis (SSc) is a complex inflammatory vasculopathy with diverse symptoms and variable disease progression. Despite its known impact on body composition (BC), clinical decision-making has yet to incorporate these biomarkers. This study aims to extract quantitative BC imaging biomarkers from CT scans to assess disease severity, define BC phenotypes, track changes over time and predict survival. CT exams were extracted from a prospectively maintained cohort of 452 SSc patients. 128 patients with at least one CT exam were included. An artificial intelligence-based 3D body composition analysis (BCA) algorithm assessed muscle volume, different adipose tissue compartments, and bone mineral density. These parameters were analysed with regard to various clinical, laboratory, functional parameters and survival. Phenotypes were identified performing K-means cluster analysis. Longitudinal evaluation of BCA changes employed regression analyses. A regression model using BCA parameters outperformed models based on Body Mass Index and clinical parameters in predicting survival (area under the curve (AUC)=0.75). Longitudinal development of the cardiac marker enabled prediction of survival with an AUC=0.82. Patients with altered BCA parameters had increased ORs for various complications, including interstitial lung disease (p<0.05). Two distinct BCA phenotypes were identified, showing significant differences in gastrointestinal disease manifestations (p<0.01). This study highlights several parameters with the potential to reshape clinical pathways for SSc patients. Quantitative BCA biomarkers offer a means to predict survival and individual disease manifestations, in part outperforming established parameters. These insights open new avenues for research into the mechanisms driving body composition changes in SSc and for developing enhanced disease management tools, ultimately leading to more personalised and effective patient care.

The evaluation of artificial intelligence in mammography-based breast cancer screening: Is breast-level analysis enough?

Taib AG, Partridge GJW, Yao L, Darker I, Chen Y

pubmed logopapersJun 25 2025
To assess whether the diagnostic performance of a commercial artificial intelligence (AI) algorithm for mammography differs between breast-level and lesion-level interpretations and to compare performance to a large population of specialised human readers. We retrospectively analysed 1200 mammograms from the NHS breast cancer screening programme using a commercial AI algorithm and assessments from 1258 trained human readers from the Personal Performance in Mammographic Screening (PERFORMS) external quality assurance programme. For breasts containing pathologically confirmed malignancies, a breast and lesion-level analysis was performed. The latter considered the locations of marked regions of interest for AI and humans. The highest score per lesion was recorded. For non-malignant breasts, a breast-level analysis recorded the highest score per breast. Area under the curve (AUC), sensitivity and specificity were calculated at the developer's recommended threshold for recall. The study was designed to detect a medium-sized effect (odds ratio 3.5 or 0.29) for sensitivity. The test set contained 882 non-malignant (73%) and 318 malignant breasts (27%), with 328 cancer lesions. The AI AUC was 0.942 at breast level and 0.929 at lesion level (difference -0.013, p < 0.01). The mean human AUC was 0.878 at breast level and 0.851 at lesion level (difference -0.027, p < 0.01). AI outperformed human readers at the breast and lesion level (ps < 0.01, respectively) according to the AUC. AI's diagnostic performance significantly decreased at the lesion level, indicating reduced accuracy in localising malignancies. However, its overall performance exceeded that of human readers. Question AI often recalls mammography cases not recalled by humans; to understand why, we as humans must consider the regions of interest it has marked as cancerous. Findings Evaluations of AI typically occur at the breast level, but performance decreases when AI is evaluated on a lesion level. This also occurs for humans. Clinical relevance To improve human-AI collaboration, AI should be assessed at the lesion level; poor accuracy here may lead to automation bias and unnecessary patient procedures.

Assessment of Robustness of MRI Radiomic Features in the Abdomen: Impact of Deep Learning Reconstruction and Accelerated Acquisition.

Zhong J, Xing Y, Hu Y, Liu X, Dai S, Ding D, Lu J, Yang J, Song Y, Lu M, Nickel D, Lu W, Zhang H, Yao W

pubmed logopapersJun 25 2025
The objective of this study is to investigate the impact of deep learning reconstruction and accelerated acquisition on reproducibility and variability of radiomic features in abdominal MRI. Seventeen volunteers were prospectively included to undergo abdominal MRI on a 3-T scanner for axial T2-weighted, axial T2-weighted fat-suppressed, and coronal T2-weighted sequences. Each sequence was scanned for four times using clinical reference acquisition with standard reconstruction, clinical reference acquisition with deep learning reconstruction, accelerated acquisition with standard reconstruction, and accelerated acquisition with deep learning reconstruction, respectively. The regions of interest were drawn for ten anatomical sites with rigid registrations. Ninety-three radiomic features were extracted via PyRadiomics after z-score normalization. The reproducibility was evaluated using clinical reference acquisition with standard reconstruction as reference by intraclass correlation coefficient (ICC) and concordance correlation coefficient (CCC). The variability among four scans was assessed by coefficient of variation (CV) and quartile coefficient of dispersion (QCD). Our study found that the median (first and third quartile) of overall ICC and CCC values were 0.451 (0.305, 0.583) and 0.450 (0.304, 0.582). The overall percentage of radiomic features with ICC > 0.90 and CCC > 0.90 was 8.1% and 8.1%, and was considered acceptable. The median (first and third quartile) of overall CV and QCD values was 9.4% (4.9%, 17.2%) and 4.9% (2.5%, 9.7%). The overall percentage of radiomic features with CV < 10% and QCD < 10% was 51.9% and 75.0%, and was considered acceptable. Without respect to clinical significance, deep learning reconstruction and accelerated acquisition led to a poor reproducibility of radiomic features, but more than a half of the radiomic features varied within an acceptable range.

Few-Shot Learning for Prostate Cancer Detection on MRI: Comparative Analysis with Radiologists' Performance.

Yamagishi Y, Baba Y, Suzuki J, Okada Y, Kanao K, Oyama M

pubmed logopapersJun 25 2025
Deep-learning models for prostate cancer detection typically require large datasets, limiting clinical applicability across institutions due to domain shift issues. This study aimed to develop a few-shot learning deep-learning model for prostate cancer detection on multiparametric MRI that requires minimal training data and to compare its diagnostic performance with experienced radiologists. In this retrospective study, we used 99 cases (80 positive, 19 negative) of biopsy-confirmed prostate cancer (2017-2022), with 20 cases for training, 5 for validation, and 74 for testing. A 2D transformer model was trained on T2-weighted, diffusion-weighted, and apparent diffusion coefficient map images. Model predictions were compared with two radiologists using Matthews correlation coefficient (MCC) and F1 score, with 95% confidence intervals (CIs) calculated via bootstrap method. The model achieved an MCC of 0.297 (95% CI: 0.095-0.474) and F1 score of 0.707 (95% CI: 0.598-0.847). Radiologist 1 had an MCC of 0.276 (95% CI: 0.054-0.484) and F1 score of 0.741; Radiologist 2 had an MCC of 0.504 (95% CI: 0.289-0.703) and F1 score of 0.871, showing that the model performance was comparable to Radiologist 1. External validation on the Prostate158 dataset revealed that ImageNet pretraining substantially improved model performance, increasing study-level ROC-AUC from 0.464 to 0.636 and study-level PR-AUC from 0.637 to 0.773 across all architectures. Our findings demonstrate that few-shot deep-learning models can achieve clinically relevant performance when using pretrained transformer architectures, offering a promising approach to address domain shift challenges across institutions.

Alterations in the functional MRI-based temporal brain organisation in individuals with obesity.

Lee S, Namgung JY, Han JH, Park BY

pubmed logopapersJun 25 2025
Obesity is associated with functional alterations in the brain. Although spatial organisation changes in the brains of individuals with obesity have been widely studied, the temporal dynamics in their brains remain poorly understood. Therefore, in this study, we investigated variations in the intrinsic neural timescale (INT) across different degrees of obesity using resting-state functional and diffusion magnetic resonance imaging data from the enhanced Nathan Kline Institute Rockland Sample database. We examined the relationship between the INT and obesity phenotypes using supervised machine learning, controlling for age and sex. To further explore the structure-function characteristics of these regions, we assessed the modular network properties by analysing the participation coefficients and within-module degree derived from the structure-function coupling matrices. Finally, the INT values of the identified regions were used to predict eating behaviour traits. A significant negative correlation was observed, particularly in the default mode, limbic and reward networks. We found a negative association with the participation coefficients, suggesting that shorter INT values in higher-order association areas are related to reduced network integration. Moreover, the INT values of these identified regions moderately predicted eating behaviours, underscoring the potential of the INT as a candidate marker for obesity and eating behaviours. These findings provide insight into the temporal organisation of neural activity in obesity, highlighting the role of specific brain networks in shaping behavioural outcomes.

[Thyroid nodule segmentation method integrating receiving weighted key-value architecture and spherical geometric features].

Zhu L, Wei G

pubmed logopapersJun 25 2025
To address the high computational complexity of the Transformer in the segmentation of ultrasound thyroid nodules and the loss of image details or omission of key spatial information caused by traditional image sampling techniques when dealing with high-resolution, complex texture or uneven density two-dimensional ultrasound images, this paper proposes a thyroid nodule segmentation method that integrates the receiving weighted key-value (RWKV) architecture and spherical geometry feature (SGF) sampling technology. This method effectively captures the details of adjacent regions through two-dimensional offset prediction and pixel-level sampling position adjustment, achieving precise segmentation. Additionally, this study introduces a patch attention module (PAM) to optimize the decoder feature map using a regional cross-attention mechanism, enabling it to focus more precisely on the high-resolution features of the encoder. Experiments on the thyroid nodule segmentation dataset (TN3K) and the digital database for thyroid images (DDTI) show that the proposed method achieves dice similarity coefficients (DSC) of 87.24% and 80.79% respectively, outperforming existing models while maintaining a lower computational complexity. This approach may provide an efficient solution for the precise segmentation of thyroid nodules.

[The analysis of invention patents in the field of artificial intelligent medical devices].

Zhang T, Chen J, Lu Y, Xu D, Yan S, Ouyang Z

pubmed logopapersJun 25 2025
The emergence of new-generation artificial intelligence technology has brought numerous innovations to the healthcare field, including telemedicine and intelligent care. However, the artificial intelligent medical device sector still faces significant challenges, such as data privacy protection and algorithm reliability. This study, based on invention patent analysis, revealed the technological innovation trends in the field of artificial intelligent medical devices from aspects such as patent application time trends, hot topics, regional distribution, and innovation players. The results showed that global invention patent applications had remained active, with technological innovations primarily focused on medical image processing, physiological signal processing, surgical robots, brain-computer interfaces, and intelligent physiological parameter monitoring technologies. The United States and China led the world in the number of invention patent applications. Major international medical device giants, such as Philips, Siemens, General Electric, and Medtronic, were at the forefront of global technological innovation, with significant advantages in patent application volumes and international market presence. Chinese universities and research institutes, such as Zhejiang University, Tianjin University, and the Shenzhen Institute of Advanced Technology, had demonstrated notable technological innovation, with a relatively high number of patent applications. However, their overseas market expansion remained limited. This study provides a comprehensive overview of the technological innovation trends in the artificial intelligent medical device field and offers valuable information support for industry development from an informatics perspective.

[Analysis of the global competitive landscape in artificial intelligence medical device research].

Chen J, Pan L, Long J, Yang N, Liu F, Lu Y, Ouyang Z

pubmed logopapersJun 25 2025
The objective of this study is to map the global scientific competitive landscape in the field of artificial intelligence (AI) medical devices using scientific data. A bibliometric analysis was conducted using the Web of Science Core Collection to examine global research trends in AI-based medical devices. As of the end of 2023, a total of 55 147 relevant publications were identified worldwide, with 76.6% published between 2018 and 2024. Research in this field has primarily focused on AI-assisted medical image and physiological signal analysis. At the national level, China (17 991 publications) and the United States (14 032 publications) lead in output. China has shown a rapid increase in publication volume, with its 2023 output exceeding twice that of the U.S.; however, the U.S. maintains a higher average citation per paper (China: 16.29; U.S.: 35.99). At the institutional level, seven Chinese institutions and three U.S. institutions rank among the global top ten in terms of publication volume. At the researcher level, prominent contributors include Acharya U Rajendra, Rueckert Daniel and Tian Jie, who have extensively explored AI-assisted medical imaging. Some researchers have specialized in specific imaging applications, such as Yang Xiaofeng (AI-assisted precision radiotherapy for tumors) and Shen Dinggang (brain imaging analysis). Others, including Gao Xiaorong and Ming Dong, focus on AI-assisted physiological signal analysis. The results confirm the rapid global development of AI in the medical device field, with "AI + imaging" emerging as the most mature direction. China and the U.S. maintain absolute leadership in this area-China slightly leads in publication volume, while the U.S., having started earlier, demonstrates higher research quality. Both countries host a large number of active research teams in this domain.

Machine Learning-Based Risk Assessment of Myasthenia Gravis Onset in Thymoma Patients and Analysis of Their Correlations and Causal Relationships.

Liu W, Wang W, Zhang H, Guo M

pubmed logopapersJun 25 2025
The study aims to utilize interpretable machine learning models to predict the risk of myasthenia gravis onset in thymoma patients and investigate the intrinsic correlations and causal relationships between them. A comprehensive retrospective analysis was conducted on 172 thymoma patients diagnosed at two medical centers between 2018 and 2024. The cohort was bifurcated into a training set (n = 134) and test set (n = 38) to develop and validate risk predictive models. Radiomic and deep features were extracted from tumor regions across three CT phases: non-enhanced, arterial, and venous. Through rigorous feature selection employing Spearman's rank correlation coefficient and LASSO (Least Absolute Shrinkage and Selection Operator) regularization, 12 optimal imaging features were identified. These were integrated with 11 clinical parameters and one pathological subtype variable to form a multi-dimensional feature matrix. Six machine learning algorithms were subsequently implemented for model construction and comparative analysis. We utilized SHAP (SHapley Additive exPlanation) to interpret the model and employed doubly robust learner to perform a potential causal analysis between thymoma and myasthenia gravis (MG). All six models demonstrated satisfactory predictive capabilities, with the support vector machine (SVM) model exhibiting superior performance on the test cohort. It achieved an area under the curve (AUC) of 0.904 (95% confidence interval [CI] 0.798-1.000), outperforming other models such as logistic regression, multilayer perceptron (MLP), and others. The model's predictive result substantiates the strong correlation between thymoma and MG. Additionally, our analysis revealed the existence of a significant causal relationship between them, and high-risk tumors significantly elevated the risk of MG by an average treatment effect (ATE) of 9.2%. This implies that thymoma patients with types B2 and B3 face a considerably high risk of developing MG compared to those with types A, AB, and B1. The model provides a novel and effective tool for evaluating the risk of MG development in patients with thymoma. Furthermore, correlation and causal analysis have unveiled pathways that connect tumor to the risk of MG, with a notably higher incidence of MG observed in high risk pathological subtypes. These insights contribute to a deeper understanding of MG and drive a paradigm shift in medical practice from passive treatment to proactive intervention.
Page 60 of 1651650 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.