Complex-Valued Spatio-Temporal Graph Convolution Neural Network optimized With Giraffe Kicking Optimization Algorithm for Thyroid Nodule Classification in Ultrasound Images.
Authors
Affiliations (3)
Affiliations (3)
- Department of Electronics and Communication Engineering, Kongu Engineering College, Erode, Tamil Nadu, India.
- Department of Computer Science and Engineering (Cyber Security), Sri Sai Ram Institute of Technology, Chennai, Tamil Nadu, India.
- Department of Integrated Computer Science and Engineering, Sri Sai Ram Engineering College, Chennai, Tamil Nadu, India.
Abstract
Thyroid hormones are significant for controlling metabolism, and two common thyroid disorders, such as hypothyroidism. The hyperthyroidism are directly affect the metabolic rate of the human body. Predicting and diagnosing thyroid disease remain significant challenges in medical research due to the complexity of thyroid hormone regulation and its impact on metabolism. Therefore, this paper proposes a Complex-valued Spatio-Temporal Graph Convolution Neural Network optimized with Giraffe Kicking Optimization Algorithm for Thyroid Nodule Classification in Ultrasound Images (CSGCNN-GKOA-TNC-UI). Here, the ultrasound images are collected through DDTI (Digital Database of Thyroid ultrasound Imageries) dataset. The gathered data is given into the pre-processing stage using Bilinear Double-Order Filter (BDOF) approach to eradicate the noise and increase the input images quality. The pre-processing image is given into the Deep Adaptive Fuzzy Clustering (DAFC) for Region of Interest (RoI) segmentation. The segmented image is fed to the Multi-Objective Matched Synchro Squeezing Chirplet Transform (MMSSCT) for extracting the features, like Geometric features and Morphological features. The extracted features are fed into the CSGCNN, which classifies the Thyroid Nodule into Benign Nodules and Malign Nodules. Finally, Giraffe Kicking Optimization Algorithm (GKOA) is considered to enhance the CSGCNN classifier. The CSGCNN-GKOA-TNC-UI algorithm is implemented in MATLAB. The CSGCNN-GKOA-TNC-UI approach attains 34.9%, 21.5% and 26.8% higher f-score, 18.6%, 29.3 and 19.2% higher accuracy when compared with existing models: Thyroid diagnosis with classification utilizing DNN depending on hybrid meta-heuristic with LSTM method (LSTM-TNC-UI), innovative full-scale connected network for segmenting thyroid nodule in UI (FCG Net-TNC-UI), and Adversarial architecture dependent multi-scale fusion method for segmenting thyroid nodule (AMSeg-TNC-UI) methods respectively. The proposed model enhances thyroid nodule classification accuracy, aiding radiologists and endocrinologists. By reducing misclassification, it minimizes unnecessary biopsies and enables early malignancy detection.