Sort by:
Page 577 of 7597590 results

Ling D, Jiao X

pubmed logopapersJun 20 2025
Breast cancer is the leading cancer threatening women's health. In recent years, deep neural networks have outperformed traditional methods in terms of both accuracy and efficiency for breast cancer classification. However, most ultrasound-based breast cancer classification methods rely on single-perspective information, which may lead to higher misdiagnosis rates. In this study, we propose a multi-view knowledge distillation vision transformer architecture (MVKD-Trans) for the classification of benign and malignant breast tumors. We utilize multi-view ultrasound images of the same tumor to capture diverse features. Additionally, we employ a shuffle module for feature fusion, extracting channel and spatial dual-attention information to improve the model's representational capability. Given the limited computational capacity of ultrasound devices, we also utilize knowledge distillation (KD) techniques to compress the multi-view network into a single-view network. The results show that the accuracy, area under the ROC curve (AUC), sensitivity, specificity, precision, and F1 score of the model are 88.15%, 91.23%, 81.41%, 90.73%, 78.29%, and 79.69%, respectively. The superior performance of our approach, compared to several existing models, highlights its potential to significantly enhance the understanding and classification of breast cancer.

McSweeney T, Tiulpin A, Kowlagi N, Määttä J, Karppinen J, Saarakkala S

pubmed logopapersJun 20 2025
A retrospective analysis. The aim of this study was to identify a robust radiomic signature from deep learning segmentations for intervertebral disc (IVD) degeneration classification. Low back pain (LBP) is the most common musculoskeletal symptom worldwide and IVD degeneration is an important contributing factor. To improve the quantitative phenotyping of IVD degeneration from T2-weighted magnetic resonance imaging (MRI) and better understand its relationship with LBP, multiple shape and intensity features have been investigated. IVD radiomics have been less studied but could reveal sub-visual imaging characteristics of IVD degeneration. We used data from Northern Finland Birth Cohort 1966 members who underwent lumbar spine T2-weighted MRI scans at age 45-47 (n=1397). We used a deep learning model to segment the lumbar spine IVDs and extracted 737 radiomic features, as well as calculating IVD height index and peak signal intensity difference. Intraclass correlation coefficients across image and mask perturbations were calculated to identify robust features. Sparse partial least squares discriminant analysis was used to train a Pfirrmann grade classification model. The radiomics model had balanced accuracy of 76.7% (73.1-80.3%) and Cohen's Kappa of 0.70 (0.67-0.74), compared to 66.0% (62.0-69.9%) and 0.55 (0.51-0.59) for an IVD height index and peak signal intensity model. 2D sphericity and interquartile range emerged as radiomics-based features that were robust and highly correlated to Pfirrmann grade (Spearman's correlation coefficients of -0.72 and -0.77 respectively). Based on our findings these radiomic signatures could serve as alternatives to the conventional indices, representing a significant advance in the automated quantitative phenotyping of IVD degeneration from standard-of-care MRI.

Fang M, Wang Z, Pan S, Feng X, Zhao Y, Hou D, Wu L, Xie X, Zhang XY, Tian J, Dong D

pubmed logopapersJun 20 2025
Recent advances in large models demonstrate significant prospects for transforming the field of medical imaging. These models, including large language models, large visual models, and multimodal large models, offer unprecedented capabilities in processing and interpreting complex medical data across various imaging modalities. By leveraging self-supervised pretraining on vast unlabeled datasets, cross-modal representation learning, and domain-specific medical knowledge adaptation through fine-tuning, large models can achieve higher diagnostic accuracy and more efficient workflows for key clinical tasks. This review summarizes the concepts, methods, and progress of large models in medical imaging, highlighting their potential in precision medicine. The article first outlines the integration of multimodal data under large model technologies, approaches for training large models with medical datasets, and the need for robust evaluation metrics. It then explores how large models can revolutionize applications in critical tasks such as image segmentation, disease diagnosis, personalized treatment strategies, and real-time interactive systems, thus pushing the boundaries of traditional imaging analysis. Despite their potential, the practical implementation of large models in medical imaging faces notable challenges, including the scarcity of high-quality medical data, the need for optimized perception of imaging phenotypes, safety considerations, and seamless integration with existing clinical workflows and equipment. As research progresses, the development of more efficient, interpretable, and generalizable models will be critical to ensuring their reliable deployment across diverse clinical environments. This review aims to provide insights into the current state of the field and provide directions for future research to facilitate the broader adoption of large models in clinical practice.

Grinberg N, Ianculovici C, Whitefield S, Kleinman S, Feldman S, Peleg O

pubmed logopapersJun 20 2025
Artificial intelligence (AI) is becoming increasingly popular in medicine. The current study aims to investigate whether an AI-based chatbot, such as ChatGPT, could be a valid tool for assisting in decision-making when assessing mandibular third molars before extractions. Panoramic radiographs were collected from a publicly available library. Mandibular third molars were assessed by position and depth. Two specialists evaluated each case regarding the need for CBCT referral, followed by introducing all cases to ChatGPT under a uniform script to decide the need for further CBCT radiographs. The process was performed first without any guidelines, Second, after introducing the guidelines presented by Rood et al. (1990), and third, with additional test cases. ChatGPT and a specialist's decision were compared and analyzed using Cohen's kappa test and the Cochrane-Mantel--Haenszel test to consider the effect of different tooth positions. All analyses were made under a 95% confidence level. The study evaluated 184 molars. Without any guidelines, ChatGPT correlated with the specialist in 49% of cases, with no statistically significant agreement (kappa < 0.1), followed by 70% and 91% with moderate (kappa = 0.39) and near-perfect (kappa = 0.81) agreement, respectively, after the second and third rounds (p < 0.05). The high correlation between the specialist and the chatbot was preserved when analyzed by the different tooth locations and positions (p < 0.01). ChatGPT has shown the ability to analyze third molars prior to surgical interventions using accepted guidelines with substantial correlation to specialists.

Zhao Y, Li Y, Jin W, Guo R, Ma C, Tang W, Li Y, El Fakhri G, Liang ZP

pubmed logopapersJun 20 2025
Magnetic resonance spectroscopic imaging has potential for non-invasive metabolic imaging of the human brain. Here we report a method that overcomes several long-standing technical barriers associated with clinical magnetic resonance spectroscopic imaging, including long data acquisition times, limited spatial coverage and poor spatial resolution. Our method achieves ultrafast data acquisition using an efficient approach to encode spatial, spectral and J-coupling information of multiple molecules. Physics-informed machine learning is synergistically integrated in data processing to enable reconstruction of high-quality molecular maps. We validated the proposed method through phantom experiments. We obtained high-resolution molecular maps from healthy participants, revealing metabolic heterogeneities in different brain regions. We also obtained high-resolution whole-brain molecular maps in regular clinical settings, revealing metabolic alterations in tumours and multiple sclerosis. This method has the potential to transform clinical metabolic imaging and provide a long-desired capability for non-invasive label-free metabolic imaging of brain function and diseases for both research and clinical applications.

Jung K, Wischnewski KJ, Eickhoff SB, Popovych OV

pubmed logopapersJun 20 2025
Predicting human behavior from neuroimaging data remains a complex challenge in neuroscience. To address this, we propose a systematic and multi-faceted framework that incorporates a model-based workflow using dynamical brain models. This approach utilizes multi-modal MRI data for brain modeling and applies the optimized modeling outcome to machine learning. We demonstrate the performance of such an approach through several examples such as sex classification and prediction of cognition or personality traits. We in particular show that incorporating the simulated data into machine learning can significantly improve the prediction performance compared to using empirical features alone. These results suggest considering the output of the dynamical brain models as an additional neuroimaging data modality that complements empirical data by capturing brain features that are difficult to measure directly. The discussed model-based workflow can offer a promising avenue for investigating and understanding inter-individual variability in brain-behavior relationships and enhancing prediction performance in neuroimaging research.

Azmy MM

pubmed logopapersJun 20 2025
Breast cancer is the most common cause of death among women worldwide. Early detection of breast cancer is important; for saving patients' lives. Ultrasound and mammography are the most common noninvasive methods for detecting breast cancer. Computer techniques are used to help physicians diagnose cancer. In most of the previous studies, the classification parameter rates were not high enough to achieve the correct diagnosis. In this study, new approaches were applied to detect breast cancer images from three databases. The programming software used to extract features from the images was MATLAB R2022a. Novel approaches were obtained using new fractional transforms. These fractional transforms were deduced from the fraction Fourier transform and novel discrete transforms. The novel discrete transforms were derived from discrete sine and cosine transforms. The steps of the approaches were described below. First, fractional transforms were applied to the breast images. Then, the empirical Fourier decomposition (EFD) was obtained. The mean, variance, kurtosis, and skewness were subsequently calculated. Finally, RNN-BILSTM (recurrent neural network-bidirectional-long short-term memory) was used as a classification phase. The proposed approaches were compared to obtain the highest accuracy rate during the classification phase based on different fractional transforms. The highest accuracy rate was obtained when the fractional discrete sinc transform of approach 4 was applied. The area under the receiver operating characteristic curve (AUC) was 1. The accuracy, sensitivity, specificity, precision, G-mean, and F-measure rates were 100%. If traditional machine learning methods, such as support vector machines (SVMs) and artificial neural networks (ANNs), were used, the classification parameter rates would be low. Therefore, the fourth approach used RNN-BILSTM to extract the features of breast images perfectly. This approach can be programed on a computer to help physicians correctly classify breast images.

Zhang H, Hu Y, Yu Y, Zhou Z, Sun Y, Qi C, Yang L, Xie H, Zhang J, Zhu H

pubmed logopapersJun 20 2025
Post-traumatic stress disorder (PTSD) is a delayed-onset or prolonged persistent psychiatric disorder caused by individuals experiencing an unusually threatening or catastrophic stressful event or situation. Due to its long duration and recurrent nature, unimodal neuroimaging tools such as computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and electroencephalography (EEG) have been widely used in the diagnosis and treatment of PTSD for early intervention. However, as compared with an unimodal approach, a multimodal imaging approach can better capture integrated neural mechanisms underlying the occurrence and development of PTSD, including predisposing factors, changes in neural activity, and physiological mechanisms of symptoms. Moreover, a multimodal neuroimaging approach can aid the diagnosis and treatment of PTSD, facilitate searching for biomarkers at different stages of PTSD, and explore biomarkers for symptomatic improvement. However, at present, the majority of PTSD studies remain unimodal, while the combination of multimodal brain imaging data with machine learning will become an important direction for future research.

Roche JJ, Seyedshahi F, Rakovic K, Thu AW, Le Quesne J, Blyth KG

pubmed logopapersJun 20 2025
Considerable challenges exist in managing lung cancer and mesothelioma, including diagnostic complexity, treatment stratification, early detection and imaging quantification. Variable incidence in mesothelioma also makes equitable provision of high-quality care difficult. In this context, artificial intelligence (AI) offers a range of assistive/automated functions that can potentially enhance clinical decision-making, while reducing inequality and pathway delay. In this state-of-the-art narrative review, we synthesise evidence on this topic, focusing particularly on tools that ingest routine pathology and radiology images. We summarise the strengths and weaknesses of AI applied to common multidisciplinary team (MDT) functions, including histological diagnosis, therapeutic response prediction, radiological detection and quantification, and survival estimation. We also review emerging methods capable of generating novel biological insights and current barriers to implementation, including access to high-quality training data and suitable regulatory and technical infrastructure. Neural networks trained on pathology images have proven utility in histological classification, prognostication, response prediction and survival. Self-supervised models can also generate new insights into biological features responsible for adverse outcomes. Radiology applications include lung nodule tools, which offer critical pathway support for imminent lung cancer screening and urgent referrals. Tumour segmentation AI offers particular advantages in mesothelioma, where response assessment and volumetric staging are difficult using human readers due to tumour size and morphological complexity. AI is also critical for radiogenomics, permitting effective integration of molecular and radiomic features for discovery of non-invasive markers for molecular subtyping and enhanced stratification. AI solutions offer considerable potential benefits across the MDT, particularly in repetitive or time-consuming tasks based on pathology and radiology images. Effective leveraging of this technology is critical for lung cancer screening and efficient delivery of increasingly complex diagnostic and predictive MDT functions. Future AI research should involve transparent and interpretable outputs that assist in explaining the basis of AI-supported decision making.

Flores A, Nitturi V, Kavoussi A, Feygin M, Andrade de Almeida RA, Ramirez Ferrer E, Anand A, Nouri S, Allam AK, Ricciardelli A, Reyes G, Reddy S, Rampalli I, Rhines L, Tatsui CE, North RY, Ghia A, Siewerdsen JH, Ropper AE, Alvarez-Breckenridge C

pubmed logopapersJun 20 2025
Neurosurgical evaluation is required in the setting of spinal metastases at high risk for leading to a vertebral body fracture. Both irradiated and nonirradiated vertebrae are affected. Understanding fracture risk is critical in determining management, including follow-up timing and prophylactic interventions. Herein, the authors report the results of a machine learning model that predicts the development or progression of a pathological vertebral compression fracture (VCF) in metastatic tumor-infiltrated thoracolumbar vertebrae in an all-comer population. A multi-institutional all-comer cohort of patients with tumor containing vertebral levels spanning T1 through L5 and at least 1 year of follow-up was included in the study. Clinical features of the patients, diseases, and treatments were collected. CT radiomic features of the vertebral bodies were extracted from tumor-infiltrated vertebrae that did or did not subsequently fracture or progress. Recursive feature elimination (RFE) of both radiomic and clinical features was performed. The resulting features were used to create a purely clinical model, purely radiomic model, and combined clinical-radiomic model. A Spine Instability Neoplastic Score (SINS) model was created for a baseline performance comparison. Model performance was assessed using the area under the receiver operating characteristic curve (AUROC), sensitivity, and specificity (with 95% confidence intervals) with tenfold cross-validation. Within 1 year from initial CT, 123 of 977 vertebrae developed VCF. Selected clinical features included SINS, SINS component for < 50% vertebral body collapse, SINS component for "none of the prior 3" (i.e., "none of the above" on the SINS component for vertebral body involvement), histology, age, and BMI. Of the 2015 radiomic features, RFE selected 19 to be used in the pure radiomic model and the combined clinical-radiomic model. The best performing model was a random forest classifier using both clinical and radiomic features, demonstrating an AUROC of 0.86 (95% CI 0.82-0.9), sensitivity of 0.78 (95% CI 0.70-0.84), and specificity of 0.80 (95% CI 0.77-0.82). This performance was significantly higher than the best SINS-alone model (AUROC 0.75, 95% CI 0.70-0.80) and outperformed the clinical-only model but not in a statistically significant manner (AUROC 0.82, 95% CI 0.77-0.87). The authors developed a clinically generalizable machine learning model to predict the risk of a new or progressing VCF in an all-comer population. This model addresses limitations from prior work and was trained on the largest cohort of patients and vertebrae published to date. If validated, the model could lead to more consistent and systematic identification of high-risk vertebrae, resulting in faster, more accurate triage of patients for optimal management.
Page 577 of 7597590 results
Show
per page

Ready to Sharpen Your Edge?

Subscribe to join 7,600+ peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.