Sort by:
Page 52 of 2252246 results

Diffusion-based Counterfactual Augmentation: Towards Robust and Interpretable Knee Osteoarthritis Grading

Zhe Wang, Yuhua Ru, Aladine Chetouani, Tina Shiang, Fang Chen, Fabian Bauer, Liping Zhang, Didier Hans, Rachid Jennane, William Ewing Palmer, Mohamed Jarraya, Yung Hsin Chen

arxiv logopreprintJun 18 2025
Automated grading of Knee Osteoarthritis (KOA) from radiographs is challenged by significant inter-observer variability and the limited robustness of deep learning models, particularly near critical decision boundaries. To address these limitations, this paper proposes a novel framework, Diffusion-based Counterfactual Augmentation (DCA), which enhances model robustness and interpretability by generating targeted counterfactual examples. The method navigates the latent space of a diffusion model using a Stochastic Differential Equation (SDE), governed by balancing a classifier-informed boundary drive with a manifold constraint. The resulting counterfactuals are then used within a self-corrective learning strategy to improve the classifier by focusing on its specific areas of uncertainty. Extensive experiments on the public Osteoarthritis Initiative (OAI) and Multicenter Osteoarthritis Study (MOST) datasets demonstrate that this approach significantly improves classification accuracy across multiple model architectures. Furthermore, the method provides interpretability by visualizing minimal pathological changes and revealing that the learned latent space topology aligns with clinical knowledge of KOA progression. The DCA framework effectively converts model uncertainty into a robust training signal, offering a promising pathway to developing more accurate and trustworthy automated diagnostic systems. Our code is available at https://github.com/ZWang78/DCA.

D2Diff : A Dual Domain Diffusion Model for Accurate Multi-Contrast MRI Synthesis

Sanuwani Dayarathna, Himashi Peiris, Kh Tohidul Islam, Tien-Tsin Wong, Zhaolin Chen

arxiv logopreprintJun 18 2025
Multi contrast MRI synthesis is inherently challenging due to the complex and nonlinear relationships among different contrasts. Each MRI contrast highlights unique tissue properties, but their complementary information is difficult to exploit due to variations in intensity distributions and contrast specific textures. Existing methods for multi contrast MRI synthesis primarily utilize spatial domain features, which capture localized anatomical structures but struggle to model global intensity variations and distributed patterns. Conversely, frequency domain features provide structured inter contrast correlations but lack spatial precision, limiting their ability to retain finer details. To address this, we propose a dual domain learning framework that integrates spatial and frequency domain information across multiple MRI contrasts for enhanced synthesis. Our method employs two mutually trained denoising networks, one conditioned on spatial domain and the other on frequency domain contrast features through a shared critic network. Additionally, an uncertainty driven mask loss directs the models focus toward more critical regions, further improving synthesis accuracy. Extensive experiments show that our method outperforms SOTA baselines, and the downstream segmentation performance highlights the diagnostic value of the synthetic results.

Deep learning model using CT images for longitudinal prediction of benign and malignant ground-glass nodules.

Yang X, Wang J, Wang P, Li Y, Wen Z, Shang J, Chen K, Tang C, Liang S, Meng W

pubmed logopapersJun 18 2025
To develop and validate a CT image-based multiple time-series deep learning model for the longitudinal prediction of benign and malignant pulmonary ground-glass nodules (GGNs). A total of 486 GGNs from an equal number of patients were included in this research, which took place at two medical centers. Each nodule underwent surgical removal and was confirmed pathologically. The patients were randomly assigned to a training set, validation set, and test set, following a distribution ratio of 7:2:1. We established a transformer-based deep learning framework that leverages multi-temporal CT images for the longitudinal prediction of GGNs, focusing on distinguishing between benign and malignant types. Additionally, we utilized 13 different machine learning algorithms to formulate clinical models, delta-radiomics models, and combined models that merge deep learning with CT semantic features. The predictive capabilities of the models were assessed using the receiver operating characteristic (ROC) curve and the area under the curve (AUC). The multiple time-series deep learning model based on CT images surpassed both the clinical model and the delta-radiomics model, showcasing strong predictive capabilities for GGNs across the training, validation, and test sets, with AUCs of 0.911 (95% CI, 0.879-0.939), 0.809 (95% CI,0.715-0.908), and 0.817 (95% CI,0.680-0.937), respectively. Furthermore, the models that integrated deep learning with CT semantic features achieved the highest performance, resulting in AUCs of 0.960 (95% CI, 0.912-0.977), 0.878 (95% CI,0.801-0.942), and 0.890(95% CI, 0.790-0.968). The multiple time-series deep learning model utilizing CT images was effective in predicting benign and malignant GGNs.

MDEANet: A multi-scale deep enhanced attention net for popliteal fossa segmentation in ultrasound images.

Chen F, Fang W, Wu Q, Zhou M, Guo W, Lin L, Chen Z, Zou Z

pubmed logopapersJun 18 2025
Popliteal sciatic nerve block is a widely used technique for lower limb anesthesia. However, despite ultrasound guidance, the complex anatomical structures of the popliteal fossa can present challenges, potentially leading to complications. To accurately identify the bifurcation of the sciatic nerve for nerve blockade, we propose MDEANet, a deep learning-based segmentation network designed for the precise localization of nerves, muscles, and arteries in ultrasound images of the popliteal region. MDEANet incorporates Cascaded Multi-scale Atrous Convolutions (CMAC) to enhance multi-scale feature extraction, Enhanced Spatial Attention Mechanism (ESAM) to focus on key anatomical regions, and Cross-level Feature Fusion (CLFF) to improve contextual representation. This integration markedly improves segmentation of nerves, muscles, and arteries. Experimental results demonstrate that MDEANet achieves an average Intersection over Union (IoU) of 88.60% and a Dice coefficient of 93.95% across all target structures, outperforming state-of-the-art models by 1.68% in IoU and 1.66% in Dice coefficient. Specifically, for nerve segmentation, the Dice coefficient reaches 93.31%, underscoring the effectiveness of our approach. MDEANet has the potential to provide decision-support assistance for anesthesiologists, thereby enhancing the accuracy and efficiency of ultrasound-guided nerve blockade procedures.

Multimodal MRI Marker of Cognition Explains the Association Between Cognition and Mental Health in UK Biobank

Buianova, I., Silvestrin, M., Deng, J., Pat, N.

medrxiv logopreprintJun 18 2025
BackgroundCognitive dysfunction often co-occurs with psychopathology. Advances in neuroimaging and machine learning have led to neural indicators that predict individual differences in cognition with reasonable performance. We examined whether these neural indicators explain the relationship between cognition and mental health in the UK Biobank cohort (n > 14000). MethodsUsing machine learning, we quantified the covariation between general cognition and 133 mental health indices and derived neural indicators of cognition from 72 neuroimaging phenotypes across diffusion-weighted MRI (dwMRI), resting-state functional MRI (rsMRI), and structural MRI (sMRI). With commonality analyses, we investigated how much of the cognition-mental health covariation is captured by each neural indicator and neural indicators combined within and across MRI modalities. ResultsThe predictive association between mental health and cognition was at out-of-sample r = 0.3. Neuroimaging phenotypes captured 2.1% to 25.8% of the cognition-mental health covariation. The highest proportion of variance explained by dwMRI was attributed to the number of streamlines connecting cortical regions (19.3%), by rsMRI through functional connectivity between 55 large-scale networks (25.8%), and by sMRI via the volumetric characteristics of subcortical structures (21.8%). Combining neuroimaging phenotypes within modalities improved the explanation to 25.5% for dwMRI, 29.8% for rsMRI, and 31.6% for sMRI, and combining them across all MRI modalities enhanced the explanation to 48%. ConclusionsWe present an integrated approach to derive multimodal MRI markers of cognition that can be transdiagnostically linked to psychopathology. This demonstrates that the predictive ability of neural indicators extends beyond the prediction of cognition itself, enabling us to capture the cognition-mental health covariation.

Comparative analysis of transformer-based deep learning models for glioma and meningioma classification.

Nalentzi K, Gerogiannis K, Bougias H, Stogiannos N, Papavasileiou P

pubmed logopapersJun 18 2025
This study compares the classification accuracy of novel transformer-based deep learning models (ViT and BEiT) on brain MRIs of gliomas and meningiomas through a feature-driven approach. Meta's Segment Anything Model was used for semi-automatic segmentation, therefore proposing a total neural network-based workflow for this classification task. ViT and BEiT models were finetuned to a publicly available brain MRI dataset. Gliomas/meningiomas cases (625/507) were used for training and 520 cases (260/260; gliomas/meningiomas) for testing. The extracted deep radiomic features from ViT and BEiT underwent normalization, dimensionality reduction based on the Pearson correlation coefficient (PCC), and feature selection using analysis of variance (ANOVA). A multi-layer perceptron (MLP) with 1 hidden layer, 100 units, rectified linear unit activation, and Adam optimizer was utilized. Hyperparameter tuning was performed via 5-fold cross-validation. The ViT model achieved the highest AUC on the validation dataset using 7 features, yielding an AUC of 0.985 and accuracy of 0.952. On the independent testing dataset, the model exhibited an AUC of 0.962 and an accuracy of 0.904. The BEiT model yielded an AUC of 0.939 and an accuracy of 0.871 on the testing dataset. This study demonstrates the effectiveness of transformer-based models, especially ViT, for glioma and meningioma classification, achieving high AUC scores and accuracy. However, the study is limited by the use of a single dataset, which may affect generalizability. Future work should focus on expanding datasets and further optimizing models to improve performance and applicability across different institutions. This study introduces a feature-driven methodology for glioma and meningioma classification, showcasing advancements in the accuracy and model robustness of transformer-based models.

Imaging Epilepsy: Past, Passing, and to Come.

Theodore WH, Inati SK, Adler S, Pearl PL, Mcdonald CR

pubmed logopapersJun 18 2025
New imaging techniques appearing over the last few decades have replaced procedures that were uncomfortable, of low specificity, and prone to adverse events. While computed tomography remains useful for imaging patients with seizures in acute settings, structural magnetic resonance imaging (MRI) has become the most important imaging modality for epilepsy evaluation, with adjunctive functional imaging also increasingly well established in presurgical evaluation, including positron emission tomography (PET), single photon ictal-interictal subtraction computed tomography co-registered to MRI and functional MRI for preoperative cognitive mapping. Neuroimaging in inherited metabolic epilepsies is integral to diagnosis, monitoring, and assessment of treatment response. Neurotransmitter receptor PET and magnetic resonance spectroscopy can help delineate the pathophysiology of these disorders. Machine learning and artificial intelligence analyses based on large MRI datasets composed of healthy volunteers and people with epilepsy have been initiated to detect lesions that are not found visually, particularly focal cortical dysplasia. These methods, not yet approved for patient care, depend on careful clinical correlation and training sets that fully sample broad populations.

A Deep Learning Lung Cancer Segmentation Pipeline to Facilitate CT-based Radiomics

So, A. C. P., Cheng, D., Aslani, S., Azimbagirad, M., Yamada, D., Dunn, R., Josephides, E., McDowall, E., Henry, A.-R., Bille, A., Sivarasan, N., Karapanagiotou, E., Jacob, J., Pennycuick, A.

medrxiv logopreprintJun 18 2025
BackgroundCT-based radio-biomarkers could provide non-invasive insights into tumour biology to risk-stratify patients. One of the limitations is laborious manual segmentation of regions-of-interest (ROI). We present a deep learning auto-segmentation pipeline for radiomic analysis. Patients and Methods153 patients with resected stage 2A-3B non-small cell lung cancer (NSCLCs) had tumours segmented using nnU-Net with review by two clinicians. The nnU-Net was pretrained with anatomical priors in non-cancerous lungs and finetuned on NSCLCs. Three ROIs were segmented: intra-tumoural, peri-tumoural, and whole lung. 1967 features were extracted using PyRadiomics. Feature reproducibility was tested using segmentation perturbations. Features were selected using minimum-redundancy-maximum-relevance with Random Forest-recursive feature elimination nested in 500 bootstraps. ResultsAuto-segmentation time was [~]36 seconds/series. Mean volumetric and surface Dice-Sorensen coefficient (DSC) scores were 0.84 ({+/-}0.28), and 0.79 ({+/-}0.34) respectively. DSC were significantly correlated with tumour shape (sphericity, diameter) and location (worse with chest wall adherence), but not batch effects (e.g. contrast, reconstruction kernel). 6.5% cases had missed segmentations; 6.5% required major changes. Pre-training on anatomical priors resulted in better segmentations compared to training on tumour-labels alone (p<0.001) and tumour with anatomical labels (p<0.001). Most radiomic features were not reproducible following perturbations and resampling. Adding radiomic features, however, did not significantly improve the clinical model in predicting 2-year disease-free survival: AUCs 0.67 (95%CI 0.59-0.75) vs 0.63 (95%CI 0.54-0.71) respectively (p=0.28). ConclusionOur study demonstrates that integrating auto-segmentation into radio-biomarker discovery is feasible with high efficiency and accuracy. Whilst radiomic analysis show limited reproducibility, our auto-segmentation may allow more robust radio-biomarker analysis using deep learning features.

Artificial intelligence-based diagnosis of hallux valgus interphalangeus using anteroposterior foot radiographs.

Kwolek K, Gądek A, Kwolek K, Lechowska-Liszka A, Malczak M, Liszka H

pubmed logopapersJun 18 2025
A recently developed method enables automated measurement of the hallux valgus angle (HVA) and the first intermetatarsal angle (IMA) from weight-bearing foot radiographs. This approach employs bone segmentation to identify anatomical landmarks and provides standardized angle measurements based on established guidelines. While effective for HVA and IMA, preoperative radiograph analysis remains complex and requires additional measurements, such as the hallux interphalangeal angle (IPA), which has received limited research attention. To expand the previous method, which measured HVA and IMA, by incorporating the automatic measurement of IPA, evaluating its accuracy and clinical relevance. A preexisting database of manually labeled foot radiographs was used to train a U-Net neural network for segmenting bones and identifying landmarks necessary for IPA measurement. Of the 265 radiographs in the dataset, 161 were selected for training and 20 for validation. The U-Net neural network achieves a high mean Sørensen-Dice index (> 0.97). The remaining 84 radiographs were used to assess the reliability of automated IPA measurements against those taken manually by two orthopedic surgeons (O<sub>A</sub> and O<sub>B</sub>) using computer-based tools. Each measurement was repeated to assess intraobserver (O<sub>A1</sub> and O<sub>A2</sub>) and interobserver (O<sub>A2</sub> and O<sub>B</sub>) reliability. Agreement between automated and manual methods was evaluated using the Intraclass Correlation Coefficient (ICC), and Bland-Altman analysis identified systematic differences. Standard error of measurement (SEM) and Pearson correlation coefficients quantified precision and linearity, and measurement times were recorded to evaluate efficiency. The artificial intelligence (AI)-based system demonstrated excellent reliability, with ICC3.1 values of 0.92 (AI <i>vs</i> O<sub>A2</sub>) and 0.88 (AI <i>vs</i> O<sub>B</sub>), both statistically significant (<i>P</i> < 0.001). For manual measurements, ICC values were 0.95 (O<sub>A2</sub> <i>vs</i> O<sub>A1</sub>) and 0.95 (O<sub>A2</sub> <i>vs</i> O<sub>B</sub>), supporting both intraobserver and interobserver reliability. Bland-Altman analysis revealed minimal biases of: (1) 1.61° (AI <i>vs</i> O<sub>A2</sub>); and (2) 2.54° (AI <i>vs</i> O<sub>B</sub>), with clinically acceptable limits of agreement. The AI system also showed high precision, as evidenced by low SEM values: (1) 1.22° (O<sub>A2</sub> <i>vs</i> O<sub>B</sub>); (2) 1.77° (AI <i>vs</i> O<sub>A2</sub>); and (3) 2.09° (AI <i>vs</i> O<sub>B</sub>). Furthermore, Pearson correlation coefficients confirmed strong linear relationships between automated and manual measurements, with <i>r</i> = 0.85 (AI <i>vs</i> O<sub>A2</sub>) and <i>r</i> = 0.90 (AI <i>vs</i> O<sub>B</sub>). The AI method significantly improved efficiency, completing all 84 measurements 8 times faster than manual methods, reducing the time required from an average 36 minutes to just 4.5 minutes. The proposed AI-assisted IPA measurement method shows strong clinical potential, effectively corresponding with manual measurements. Integrating IPA with HVA and IMA assessments provides a comprehensive tool for automated forefoot deformity analysis, supporting hallux valgus severity classification and preoperative planning, while offering substantial time savings in high-volume clinical settings.

USING ARTIFICIAL INTELLIGENCE TO PREDICT TREATMENT OUTCOMES IN PATIENTS WITH NEUROGENIC OVERACTIVE BLADDER AND MULTIPLE SCLEROSIS

Chang, O., Lee, J., Lane, F., Demetriou, M., Chang, P.

medrxiv logopreprintJun 18 2025
Introduction and ObjectivesMany women with multiple sclerosis (MS) experience neurogenic overactive bladder (NOAB) characterized by urinary frequency, urinary urgency and urgency incontinence. The objective of the study was to create machine learning (ML) models utilizing clinical and imaging data to predict NOAB treatment success stratified by treatment type. MethodsThis was a retrospective cohort study of female patients with diagnosis of NOAB and MS seen at a tertiary academic center from 2017-2022. Clinical and imaging data were extracted. Three types of NOAB treatment options evaluated included behavioral therapy, medication therapy and minimally invasive therapies. The primary outcome - treatment success was defined as > 50% reduction in urinary frequency, urinary urgency or a subjective perception of treatment success. For the construction of the logistic regression ML models, bivariate analyses were performed with backward selection of variables with p-values of < 0.10 and clinically relevant variables applied. For ML, the cohort was split into a training dataset (70%) and a test dataset (30%). Area under the curve (AUC) scores are calculated to evaluate model performance. ResultsThe 110 patients included had a mean age of patients were 59 years old (SD 14 years), with a predominantly White cohort (91.8%), post-menopausal (68.2%). Patients were stratified by NOAB treatment therapy type received with 70 patients (63.6%) at behavioral therapy, 58 (52.7%) with medication therapy and 44 (40%) with minimally invasive therapies. On MRI brain imaging, 63.6% of patients had > 20 lesions though majority were not active lesions. The lesions were mostly located within the supratentorial (94.5%), infratentorial (68.2%) and 58.2 infratentorial brain (63.8%) as well as in the deep white matter (53.4%). For MRI spine imaging, most of the lesions were in the cervical spine (71.8%) followed by thoracic spine (43.7%) and lumbar spine (6.4%).10.3%). After feature selection, the top 10 highest ranking features were used to train complimentary LASSO-regularized logistic regression (LR) and extreme gradient-boosted tree (XGB) models. The top-performing LR models for predicting response to behavioral, medication, and minimally invasive therapies yielded AUC values of 0.74, 0.76, and 0.83, respectively. ConclusionsUsing these top-ranked features, LR models achieved AUC values of 0.74-0.83 for prediction of treatment success based on individual factors. Further prospective evaluation is needed to better characterize and validate these identified associations.
Page 52 of 2252246 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.