Sort by:
Page 5 of 25249 results

The impacts of artificial intelligence on the workload of diagnostic radiology services: A rapid review and stakeholder contextualisation

Sutton, C., Prowse, J., Elshehaly, M., Randell, R.

medrxiv logopreprintJul 24 2025
BackgroundAdvancements in imaging technology, alongside increasing longevity and co-morbidities, have led to heightened demand for diagnostic radiology services. However, there is a shortfall in radiology and radiography staff to acquire, read and report on such imaging examinations. Artificial intelligence (AI) has been identified, notably by AI developers, as a potential solution to impact positively the workload of radiology services for diagnostics to address this staffing shortfall. MethodsA rapid review complemented with data from interviews with UK radiology service stakeholders was undertaken. ArXiv, Cochrane Library, Embase, Medline and Scopus databases were searched for publications in English published between 2007 and 2022. Following screening 110 full texts were included. Interviews with 15 radiology service managers, clinicians and academics were carried out between May and September 2022. ResultsMost literature was published in 2021 and 2022 with a distinct focus on AI for diagnostics of lung and chest disease (n = 25) notably COVID-19 and respiratory system cancers, closely followed by AI for breast screening (n = 23). AI contribution to streamline the workload of radiology services was categorised as autonomous, augmentative and assistive contributions. However, percentage estimates, of workload reduction, varied considerably with the most significant reduction identified in national screening programmes. AI was also recognised as aiding radiology services through providing second opinion, assisting in prioritisation of images for reading and improved quantification in diagnostics. Stakeholders saw AI as having the potential to remove some of the laborious work and contribute service resilience. ConclusionsThis review has shown there is limited data on real-world experiences from radiology services for the implementation of AI in clinical production. Autonomous, augmentative and assistive AI can, as noted in the article, decrease workload and aid reading and reporting, however the governance surrounding these advancements lags.

Evaluation of Brain Stiffness in Patients Undergoing Carotid Angioplasty and Stenting Using Magnetic Resonance Elastography.

Wu CH, Murphy MC, Chiang CC, Chen ST, Chung CP, Lirng JF, Luo CB, Rossman PJ, Ehman RL, Huston J, Chang FC

pubmed logopapersJul 24 2025
Percutaneous transluminal angioplasty and stenting (PTAS) in patients with carotid stenosis may have potential effects on brain parenchyma. However, current studies on parenchymal changes are scarce due to the need for advanced imaging modalities. Consequently, the alterations in brain parenchyma following PTAS remain an unsolved issue. To investigate changes to the brain parenchyma using magnetic resonance elastography (MRE). Prospective. 13 patients (6 women and 7 men; 39 MRI imaging sessions) with severe unilateral carotid stenosis patients indicated for PTAS were recruited between 2021 and 2024. Noncontrast MRI sequences including MRE (spin echo) were acquired using 3 T scanners. All patients underwent MRE before (preprocedural), within 24 h (early postprocedural) and 3 months after (delayed postprocedural) PTAS. Preprocedural and delayed postprocedural ultrasonographic peak systolic velocity (PSV) was recorded. MRE stiffness and damping ratio were evaluated via neural network inversion of the whole brain, in 14 gray matter (GM) and 12 white matter (WM) regions. Stiffness and damping ratio differences between each pair of MR sessions for each subject were identified by paired sample t tests. The correlations of stiffness and damping ratio with stenosis grade and ultrasonographic PSV dynamics were evaluated by Pearson correlation coefficients. The statistical significance was defined as p < 0.05. The stiffness of lesion side insula, deep GM, and deep WM increased significantly from preprocedural to delayed postprocedural MRE. Increasing deep GM stiffness on the lesion side was positively correlated with the DSA stenosis grade significantly (r = 0.609). The lesion side insula stiffness increments were positively correlated with PSV decrements significantly (r = 0.664). Regional brain stiffness increased 3 months after PTAS. Lesion side stiffness was positively correlated with stenosis grades in deep GM and PSV decrements in the insula. EVIDENCE LEVEL: 2. Stage 2.

Artificial Intelligence for Detecting Pulmonary Embolisms <i>via</i> CT: A Workflow-oriented Implementation.

Abed S, Hergan K, Dörrenberg J, Brandstetter L, Lauschmann M

pubmed logopapersJul 23 2025
Detecting Pulmonary Embolism (PE) is critical for effective patient care, and Artificial Intelligence (AI) has shown promise in supporting radiologists in this task. Integrating AI into radiology workflows requires not only evaluation of its diagnostic accuracy but also assessment of its acceptance among clinical staff. This study aims to evaluate the performance of an AI algorithm in detecting pulmonary embolisms (PEs) on contrast-enhanced computed tomography pulmonary angiograms (CTPAs) and to assess the level of acceptance of the algorithm among radiology department staff. This retrospective study analyzed anonymized computed tomography pulmonary angiography (CTPA) data from a university clinic. Surveys were conducted at three and nine months after the implementation of a commercially available AI algorithm designed to flag CTPA scans with suspected PE. A thoracic radiologist and a cardiac radiologist served as the reference standard for evaluating the performance of the algorithm. The AI analyzed 59 CTPA cases during the initial evaluation and 46 cases in the follow-up assessment. In the first evaluation, the AI algorithm demonstrated a sensitivity of 84.6% and a specificity of 94.3%. By the second evaluation, its performance had improved, achieving a sensitivity of 90.9% and a specificity of 96.7%. Radiologists' acceptance of the AI tool increased over time. Nevertheless, despite this growing acceptance, many radiologists expressed a preference for hiring an additional physician over adopting the AI solution if the costs were comparable. Our study demonstrated high sensitivity and specificity of the AI algorithm, with improved performance over time and a reduced rate of unanalyzed scans. These improvements likely reflect both algorithmic refinement and better data integration. Departmental feedback indicated growing user confidence and trust in the tool. However, many radiologists continued to prefer the addition of a resident over reliance on the algorithm. Overall, the AI showed promise as a supportive "second-look" tool in emergency radiology settings. The AI algorithm demonstrated diagnostic performance comparable to that reported in similar studies for detecting PE on CTPA, with both sensitivity and specificity showing improvement over time. Radiologists' acceptance of the algorithm increased throughout the study period, underscoring its potential as a complementary tool to physician expertise in clinical practice.

Non-invasive meningitis screening in neonates and infants: multicentre international study.

Ajanovic S, Jobst B, Jiménez J, Quesada R, Santos F, Carandell F, Lopez-Azorín M, Valverde E, Ybarra M, Bravo MC, Petrone P, Sial H, Muñoz D, Agut T, Salas B, Carreras N, Alarcón A, Iriondo M, Luaces C, Sidat M, Zandamela M, Rodrigues P, Graça D, Ngovene S, Bramugy J, Cossa A, Mucasse C, Buck WC, Arias S, El Abbass C, Tligi H, Barkat A, Ibáñez A, Parrilla M, Elvira L, Calvo C, Pellicer A, Cabañas F, Bassat Q

pubmed logopapersJul 23 2025
Meningitis diagnosis requires a lumbar puncture (LP) to obtain cerebrospinal fluid (CSF) for a laboratory-based analysis. In high-income settings, LPs are part of the systematic approach to screen for meningitis, and most yield negative results. In low- and middle-income settings, LPs are seldom performed, and suspected cases are often treated empirically. The aim of this study was to validate a non-invasive transfontanellar white blood cell (WBC) counter in CSF to screen for meningitis. We conducted a prospective study across three Spanish hospitals, one Mozambican and one Moroccan hospital (2020-2023). We included patients under 24 months with suspected meningitis, an open fontanelle, and a LP performed within 24 h from recruitment. High-resolution-ultrasound (HRUS) images of the CSF were obtained using a customized probe. A deep-learning model was trained to classify CSF patterns based on LPs WBC counts, using a 30cells/mm<sup>3</sup> threshold. The algorithm was applied to 3782 images from 76 patients. It correctly classified 17/18 CSFs with <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>≥</mo></math> 30 WBC, and 55/58 controls (sensitivity 94.4%, specificity 94.8%). The only false negative was paired to a traumatic LP with 40 corrected WBC/mm<sup>3</sup>. This non-invasive device could be an accurate tool for screening meningitis in neonates and young infants, modulating LP indications. Our non-invasive, high-resolution ultrasound device achieved 94% accuracy in detecting elevated leukocyte counts in neonates and infants with suspected meningitis, compared to the gold standard (lumbar punctures and laboratory analysis). This first-in-class screening device introduces the first non-invasive method for neonatal and infant meningitis screening, potentially modulating lumbar puncture indications. This technology could substantially reduce lumbar punctures in low-suspicion cases and provides a viable alternative critically ill patients worldwide or in settings where lumbar punctures are unfeasible, especially in low-income countries).

Developing deep learning-based cerebral ventricle auto-segmentation system and clinical application for the evaluation of ventriculomegaly.

Nam SM, Hwang JH, Kim JM, Lee DI, Kim YH, Park SJ, Park CK, Dho YS, Kim MS

pubmed logopapersJul 23 2025
Current methods for evaluating ventriculomegaly, particularly Evans' Index (EI), fail to accurately assess three-dimensional ventricular changes. We developed and validated an automated multi-class segmentation system for precise volumetric assessment, simultaneously segmenting five anatomical classes (ventricles, parenchyma, skull, skin, and hemorrhage) to support future augmented reality (AR)-guided external ventricular drainage (EVD) systems. Using the nnUNet architecture, we trained our model on 288 brain CT scans with diverse pathological conditions and validated it using internal (n=10),external (n=43) and public (n=192) datasets. Clinical validation involved 227 patients who underwent CSF drainage procedures. We compared automated volumetric measurements against traditional EI measurements and actual CSF drainage volumes in surgical cases. The model achieved exceptional performance with a mean Dice similarity coefficient of 93.0% across all five classes, demonstrating consistent performance across institutional and public datasets, with particularly robust ventricle segmentation (92.5%). Clinical validation revealed EI was the strongest single predictor of ventricular volume (adjusted R<sup>2</sup> = 0.430, p < 0.001), though influenced by age, sex, and diagnosis type. Most significantly, in EVD cases, automated volume differences showed remarkable correlation with actual CSF drainage amounts (β = 0.956, adjusted R<sup>2</sup> = 0.936, p < 0.001), validating the system's accuracy in measuring real CSF volume changes. Our comprehensive multi-class segmentation system offers a superior alternative to traditional measurements with potential for non-invasive CSF dynamics monitoring and AR-guided EVD placement.

Back to the Future-Cardiovascular Imaging From 1966 to Today and Tomorrow.

Wintersperger BJ, Alkadhi H, Wildberger JE

pubmed logopapersJul 23 2025
This article, on the 60th anniversary of the journal Investigative Radiology, a journal dedicated to cutting-edge imaging technology, discusses key historical milestones in CT and MRI technology, as well as the ongoing advancement of contrast agent development for cardiovascular imaging over the past decades. It specifically highlights recent developments and the current state-of-the-art technology, including photon-counting detector CT and artificial intelligence, which will further push the boundaries of cardiovascular imaging. What were once ideas and visions have become today's clinical reality for the benefit of patients, and imaging technology will continue to evolve and transform modern medicine.

Thin-Slice Brain CT Image Quality and Lesion Detection Evaluation in Deep Learning Reconstruction Algorithm.

Sun J, Yao H, Han T, Wang Y, Yang L, Hao X, Wu S

pubmed logopapersJul 23 2025
Clinical evaluation of Artificial Intelligence (AI)-based Precise Image (PI) algorithm in brain imaging remains limited. PI is a deep-learning reconstruction (DLR) technique that reduces image noise while maintaining a familiar Filtered Back Projection (FBP)-like appearance at low doses. This study aims to compare PI, Iterative Reconstruction (IR), and FBP-in improving image quality and enhancing lesion detection in 1.0 mm thin-slice brain computed tomography (CT) images. A retrospective analysis was conducted on brain non-contrast CT scans from August to September 2024 at our institution. Each scan was reconstructed using four methods: routine 5.0 mm FBP (Group A), thin-slice 1.0 mm FBP (Group B), thin-slice 1.0 mm IR (Group C), and thin-slice 1.0 mm PI (Group D). Subjective image quality was assessed by two radiologists using a 4- or 5‑point Likert scale. Objective metrics included contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and image noise across designated regions of interest (ROIs). 60 patients (65.47 years ± 18.40; 29 males and 31 females) were included. Among these, 39 patients had lesions, primarily low-density lacunar infarcts. Thin-slice PI images demonstrated the lowest image noise and artifacts, alongside the highest CNR and SNR values (p < 0.001) compared to Groups A, B, and C. Subjective assessments revealed that both PI and IR provided significantly improved image quality over routine FBP (p < 0.05). Specifically, Group D (PI) achieved superior lesion conspicuity and diagnostic confidence, with a 100% detection rate for lacunar lesions, outperforming Groups B and A. PI reconstruction significantly enhances image quality and lesion detectability in thin-slice brain CT scans compared to IR and FBP, suggesting its potential as a new clinical standard.

Artificial Intelligence Empowers Novice Users to Acquire Diagnostic-Quality Echocardiography.

Trost B, Rodrigues L, Ong C, Dezellus A, Goldberg YH, Bouchat M, Roger E, Moal O, Singh V, Moal B, Lafitte S

pubmed logopapersJul 22 2025
Cardiac ultrasound exams provide real-time data to guide clinical decisions but require highly trained sonographers. Artificial intelligence (AI) that uses deep learning algorithms to guide novices in the acquisition of diagnostic echocardiographic studies may broaden access and improve care. The objective of this trial was to evaluate whether nurses without previous ultrasound experience (novices) could obtain diagnostic-quality acquisitions of 10 echocardiographic views using AI-based software. This noninferiority study was prospective, international, nonrandomized, and conducted at 2 medical centers, in the United States and France, from November 2023 to August 2024. Two limited cardiac exams were performed on adult patients scheduled for a clinically indicated echocardiogram; one was conducted by a novice using AI guidance and one by an expert (experienced sonographer or cardiologist) without it. Primary endpoints were evaluated by 5 experienced cardiologists to assess whether the novice exam was of sufficient quality to visually analyze the left ventricular size and function, the right ventricle size, and the presence of nontrivial pericardial effusion. Secondary endpoints included 8 additional cardiac parameters. A total of 240 patients (mean age 62.6 years; 117 women (48.8%); mean body mass index 26.6 kg/m<sup>2</sup>) completed the study. One hundred percent of the exams performed by novices with the studied software were of sufficient quality to assess the primary endpoints. Cardiac parameters assessed in exams conducted by novices and experts were strongly correlated. AI-based software provides a safe means for novices to perform diagnostic-quality cardiac ultrasounds after a short training period.

Dual-Network Deep Learning for Accelerated Head and Neck MRI: Enhanced Image Quality and Reduced Scan Time.

Li S, Yan W, Zhang X, Hu W, Ji L, Yue Q

pubmed logopapersJul 22 2025
Head-and-neck MRI faces inherent challenges, including motion artifacts and trade-offs between spatial resolution and acquisition time. We aimed to evaluate a dual-network deep learning (DL) super-resolution method for improving image quality and reducing scan time in T1- and T2-weighted head-and-neck MRI. In this prospective study, 97 patients with head-and-neck masses were enrolled at xx from August 2023 to August 2024. After exclusions, 58 participants underwent paired conventional and accelerated T1WI and T2WI MRI sequences, with the accelerated sequences being reconstructed using a dual-network DL framework for super-resolution. Image quality was assessed both quantitatively (signal-to-noise ratio [SNR], contrast-to-noise ratio [CNR], contrast ratio [CR]) and qualitatively by two blinded radiologists using a 5-point Likert scale for image sharpness, lesion conspicuity, structure delineation, and artifacts. Wilcoxon signed-rank tests were used to compare paired outcomes. Among 58 participants (34 men, 24 women; mean age 51.37 ± 13.24 years), DL reconstruction reduced scan times by 46.3% (T1WI) and 26.9% (T2WI). Quantitative analysis showed significant improvements in SNR (T1WI: 26.33 vs. 20.65; T2WI: 14.14 vs. 11.26) and CR (T1WI: 0.20 vs. 0.18; T2WI: 0.34 vs. 0.30; all p < 0.001), with comparable CNR (p > 0.05). Qualitatively, image sharpness, lesion conspicuity, and structure delineation improved significantly (p < 0.05), while artifact scores remained similar (all p > 0.05). The dual-network DL method significantly enhanced image quality and reduced scan times in head-and-neck MRI while maintaining diagnostic performance comparable to conventional methods. This approach offers potential for improved workflow efficiency and patient comfort.

Artificial intelligence-generated apparent diffusion coefficient (AI-ADC) maps for prostate gland assessment: a multi-reader study.

Ozyoruk KB, Harmon SA, Yilmaz EC, Huang EP, Gelikman DG, Gaur S, Giganti F, Law YM, Margolis DJ, Jadda PK, Raavi S, Gurram S, Wood BJ, Pinto PA, Choyke PL, Turkbey B

pubmed logopapersJul 21 2025
To compare the quality of AI-ADC maps and standard ADC maps in a multi-reader study. Multi-reader study included 74 consecutive patients (median age = 66 years, [IQR = 57.25-71.75 years]; median PSA = 4.30 ng/mL [IQR = 1.33-7.75 ng/mL]) with suspected or confirmed PCa, who underwent mpMRI between October 2023 and January 2024. The study was conducted in two rounds, separated by a 4-week wash-out period. In each round, four readers evaluated T2W-MRI and standard or AI-generated ADC (AI-ADC) maps. Fleiss' kappa, quadratic-weighted Cohen's kappa statistics were used to assess inter-reader agreement. Linear mixed effect models were employed to compare the quality evaluation of standard versus AI-ADC maps. AI-ADC maps exhibited significantly enhanced imaging quality compared to standard ADC maps with higher ratings in windowing ease (β = 0.67 [95% CI 0.30-1.04], p < 0.05), prostate boundary delineation (β = 1.38 [95% CI 1.03-1.73], p < 0.001), reductions in distortion (β = 1.68 [95% CI 1.30-2.05], p < 0.001), noise (β = 0.56 [95% CI 0.24-0.88], p < 0.001). AI-ADC maps reduced reacquisition requirements for all readers (β = 2.23 [95% CI 1.69-2.76], p < 0.001), supporting potential workflow efficiency gains. No differences were observed between AI-ADC and standard ADC maps' inter-reader agreement. Our multi-reader study demonstrated that AI-ADC maps improved prostate boundary delineation, had lower image noise, fewer distortions, and higher overall image quality compared to ADC maps. Question Can we synthesize apparent diffusion coefficient (ADC) maps with AI to achieve higher quality maps? Findings On average, readers rated quality factors of AI-ADC maps higher than ADC maps in 34.80% of cases, compared to 5.07% for ADC (p < 0.01). Clinical relevance AI-ADC maps may serve as a reliable diagnostic support tool thanks to their high quality, particularly when the acquired ADC maps include artifacts.
Page 5 of 25249 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.