Back to all papers

Pulmonary T2* quantification of fetuses with congenital diaphragmatic hernia: a retrospective, case-controlled, MRI pilot study.

Authors

Avena-Zampieri CL,Uus A,Egloff A,Davidson J,Hutter J,Knight CL,Hall M,Deprez M,Payette K,Rutherford M,Greenough A,Story L

Affiliations (9)

  • Department of Women and Children's Health, King's College London, London, United Kingdom. [email protected].
  • Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom. [email protected].
  • Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.
  • Fetal Medicine Unit, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom.
  • University College London/Great Ormond Street Institute of Child Health, London, United Kingdom.
  • Department of Paediatric Surgery, Evelina London Children's Hospital, London, United Kingdom.
  • Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.
  • Smart Imaging Lab, Radiological Institute, University Hospital Erlangen, Erlangen, Germany.
  • Department of Women and Children's Health, King's College London, London, United Kingdom.

Abstract

Advanced MRI techniques, motion-correction and T2*-relaxometry, may provide information regarding functional properties of pulmonary tissue. We assessed whether lung volumes and pulmonary T2* values in fetuses with congenital diaphragmatic hernia (CDH) were lower than controls and differed between survivors and non-survivors. Women with uncomplicated pregnancies (controls) and those with a CDH had a fetal MRI on a 1.5 T imaging system encompassing T2 single shot fast spin echo sequences and gradient echo single shot echo planar sequences providing T2* data. Motion-correction was performed using slice-to-volume reconstruction, T2* maps were generated using in-house pipelines. Lungs were segmented separately using a pre-trained 3D-deep-learning pipeline. Datasets from 33 controls and 12 CDH fetuses were analysed. The mean ± SD gestation at scan was 28.3 ± 4.3 for controls and 27.6 ± 4.9 weeks for CDH cases. CDH lung volumes were lower than controls in both non-survivors and survivors for both lungs combined (5.76 ± 3.59 [cc], mean difference = 15.97, 95% CI: -24.51--12.9, p < 0.001 and 5.73 ± 2.96 [cc], mean difference = 16, 95% CI: 1.91-11.53, p = 0.008) and for the ipsilateral lung (1.93 ± 2.09 [cc], mean difference = 19.8, 95% CI: -28.48--16.45, p < 0.001 1.58 ± 1.18 [cc], mean difference=20.15, 95% CI: 5.96-15.97, p < 0.001). Mean pulmonary T2* values were lower in non-survivors in both lungs, the ipsilateral and contralateral lungs compared with the control group (81.83 ± 26.21 ms, mean difference = 31.13, 95% CI: -58.14--10.32, p = 0.006; 81.05 ± 26.84 ms, mean difference = 31.91, 95% CI: -59.02--10.82, p = 0.006; 82.62 ± 36.31 ms, mean difference = 30.34, 95% CI: -58.84--8.25, p = 0.011) but no difference was observed between controls and CDH cases that survived. Mean pulmonary T2* values were lower in CDH fetuses compared to controls and CDH cases who died compared to survivors. Mean pulmonary T2* values may have a prognostic function in CDH fetuses. This study provides original motion-corrected assessment of the morphologic and functional properties of the ipsilateral and contralateral fetal lungs in the context of CDH. Mean pulmonary T2* values were lower in CDH fetuses compared to controls and in cases who died compared to survivors. Mean pulmonary T2* values may have a role in prognostication. Reduction in pulmonary T2* values in CDH fetuses suggests altered pulmonary development, contributing new insights into antenatal assessment.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.