Sort by:
Page 38 of 41404 results

Single View Echocardiographic Analysis for Left Ventricular Outflow Tract Obstruction Prediction in Hypertrophic Cardiomyopathy: A Deep Learning Approach

Kim, J., Park, J., Jeon, J., Yoon, Y. E., Jang, Y., Jeong, H., Lee, S.-A., Choi, H.-M., Hwang, I.-C., Cho, G.-Y., Chang, H.-J.

medrxiv logopreprintMay 14 2025
BackgroundAccurate left ventricular outflow tract obstruction (LVOTO) assessment is crucial for hypertrophic cardiomyopathy (HCM) management and prognosis. Traditional methods, requiring multiple views, Doppler, and provocation, is often infeasible, especially where resources are limited. This study aimed to develop and validate a deep learning (DL) model capable of predicting severe LVOTO in HCM patients using only the parasternal long-axis (PLAX) view from transthoracic echocardiography (TTE). MethodsA DL model was trained on PLAX videos extracted from TTE examinations (developmental dataset, n=1,007) to capture both morphological and dynamic motion features, generating a DL index for LVOTO (DLi-LVOTO, range 0-100). Performance was evaluated in an internal test dataset (ITDS, n=87) and externally validated in the distinct hospital dataset (DHDS, n=1,334) and the LVOTO reduction treatment dataset (n=156). ResultsThe model achieved high accuracy in detecting severe LVOTO (pressure gradient[&ge;] 50mmHg), with area under the receiver operating characteristics curve (AUROC) of 0.97 (95% confidence interval: 0.92-1.00) in ITDS and 0.93 (0.92-0.95) in DHDS. At a DLi-LVOTO threshold of 70, the model demonstrated a specificity of 97.3% and negative predictive value (NPV) of 96.1% in ITDS. In DHDS, a cutoff of 60 yielded a specificity of 94.6% and NPV of 95.5%. DLi-LVOTO also decreased significantly after surgical myectomy or Mavacamten treatment, correlating with reductions in peak pressure gradient (p<0.001 for all). ConclusionsOur DL-based approach predicts severe LVOTO using only the PLAX view from TTE, serving as a complementary tool, particularly in resource-limited settings or when Doppler is unavailable, and for monitoring treatment response.

Automated whole-breast ultrasound tumor diagnosis using attention-inception network.

Zhang J, Huang YS, Wang YW, Xiang H, Lin X, Chang RF

pubmed logopapersMay 14 2025
Automated Whole-Breast Ultrasound (ABUS) has been widely used as an important tool in breast cancer diagnosis due to the ability of this technique to provide complete three-dimensional (3D) images of breasts. To eliminate the risk of misdiagnosis, computer-aided diagnosis (CADx) systems have been proposed to assist radiologists. Convolutional neural networks (CNNs), renowned for the automatic feature extraction capabilities, have developed rapidly in medical image analysis, and this study proposes a CADx system based on 3D CNN for ABUS. This study used a private dataset collected at Sun Yat-Sen University Cancer Center (SYSUCC) from 396 breast tumor patients. First, the tumor volume of interest (VOI) was extracted and resized, and then the tumor was enhanced by histogram equalization. Second, a 3D U-Net++ was employed to segment the tumor mask. Finally, the VOI, the enhanced VOI, and the corresponding tumor mask were fed into a 3D Attention-Inception network to classify the tumor as benign or malignant. The experiment results indicate an accuracy of 89.4%, a sensitivity of 91.2%, a specificity of 87.6%, and an area under the receiver operating characteristic curve (AUC) of 0.9262, which suggests that the proposed CADx system for ABUS images rivals the performance of experienced radiologists in tumor diagnosis tasks. This study proposes a CADx system consisting of a 3D U-Net++ tumor segmentation model and a 3D attention inception neural network tumor classification model for diagnosis in ABUS images. The results indicate that the proposed CADx system is effective and efficient in tumor diagnosis tasks.

The Future of Urodynamics: Innovations, Challenges, and Possibilities.

Chew LE, Hannick JH, Woo LL, Weaver JK, Damaser MS

pubmed logopapersMay 14 2025
Urodynamic studies (UDS) are essential for evaluating lower urinary tract function but are limited by patient discomfort, lack of standardization and diagnostic variability. Advances in technology aim to address these challenges and improve diagnostic accuracy and patient comfort. AUM offers physiological assessment by allowing natural bladder filling and monitoring during daily activities. Compared to conventional UDS, AUM demonstrates higher sensitivity for detecting detrusor overactivity and underlying pathophysiology. However, it faces challenges like motion artifacts, catheter-related discomfort, and difficulty measuring continuous bladder volume. Emerging devices such as Urodynamics Monitor and UroSound offer more patient-friendly alternatives. These tools have the potential to improve diagnostic accuracy for bladder pressure and voiding metrics but remain limited and still require further validation and testing. Ultrasound-based modalities, including dynamic ultrasonography and shear wave elastography, provide real-time, noninvasive assessment of bladder structure and function. These modalities are promising but will require further development of standardized protocols. AI and machine learning models enhance diagnostic accuracy and reduce variability in UDS interpretation. Applications include detecting detrusor overactivity and distinguishing bladder outlet obstruction from detrusor underactivity. However, further validation is required for clinical adoption. Advances in AUM, wearable technologies, ultrasonography, and AI demonstrate potential for transforming UDS into a more accurate, patient-centered tool. Despite significant progress, challenges like technical complexity, standardization, and cost-effectiveness must be addressed to integrate these innovations into routine practice. Nonetheless, these technologies provide the possibility of a future of improved diagnosis and treatment of lower urinary tract dysfunction.

Development and Validation of Ultrasound Hemodynamic-based Prediction Models for Acute Kidney Injury After Renal Transplantation.

Ni ZH, Xing TY, Hou WH, Zhao XY, Tao YL, Zhou FB, Xing YQ

pubmed logopapersMay 14 2025
Acute kidney injury (AKI) post-renal transplantation often has a poor prognosis. This study aimed to identify patients with elevated risks of AKI after kidney transplantation. A retrospective analysis was conducted on 422 patients who underwent kidney transplants from January 2020 to April 2023. Participants from 2020 to 2022 were randomized to training group (n=261) and validation group 1 (n=113), and those in 2023, as validation group 2 (n=48). Risk factors were determined by employing logistic regression analysis alongside the least absolute shrinkage and selection operator, making use of ultrasound hemodynamic, clinical, and laboratory information. Models for prediction were developed using logistic regression analysis and six machine-learning techniques. The evaluation of the logistic regression model encompassed its discrimination, calibration, and applicability in clinical settings, and a nomogram was created to illustrate the model. SHapley Additive exPlanations were used to explain and visualize the best of the six machine learning models. The least absolute shrinkage and selection operator combined with logistic regression identified and incorporated five risk factors into the predictive model. The logistic regression model (AUC=0.927 in the validation set 1; AUC=0.968 in the validation set 2) and the random forest model (AUC=0.946 in the validation set 1;AUC=0.996 in the validation set 2) showed good performance post-validation, with no significant difference in their predictive accuracy. These findings can assist clinicians in the early identification of patients at high risk for AKI, allowing for timely interventions and potentially enhancing the prognosis following kidney transplantation.

DEMAC-Net: A Dual-Encoder Multiattention Collaborative Network for Cervical Nerve Pathway and Adjacent Anatomical Structure Segmentation.

Cui H, Duan J, Lin L, Wu Q, Guo W, Zang Q, Zhou M, Fang W, Hu Y, Zou Z

pubmed logopapersMay 13 2025
Currently, cervical anesthesia is performed using three main approaches: superficial cervical plexus block, deep cervical plexus block, and intermediate plexus nerve block. However, each technique carries inherent risks and demands significant clinical expertise. Ultrasound imaging, known for its real-time visualization capabilities and accessibility, is widely used in both diagnostic and interventional procedures. Nevertheless, accurate segmentation of small and irregularly shaped structures such as the cervical and brachial plexuses remains challenging due to image noise, complex anatomical morphology, and limited annotated training data. This study introduces DEMAC-Net-a dual-encoder, multiattention collaborative network-to significantly improve the segmentation accuracy of these neural structures. By precisely identifying the cervical nerve pathway (CNP) and adjacent anatomical tissues, DEMAC-Net aims to assist clinicians, especially those less experienced, in effectively guiding anesthesia procedures and accurately identifying optimal needle insertion points. Consequently, this improvement is expected to enhance clinical safety, reduce procedural risks, and streamline decision-making efficiency during ultrasound-guided regional anesthesia. DEMAC-Net combines a dual-encoder architecture with the Spatial Understanding Convolution Kernel (SUCK) and the Spatial-Channel Attention Module (SCAM) to extract multi-scale features effectively. Additionally, a Global Attention Gate (GAG) and inter-layer fusion modules refine relevant features while suppressing noise. A novel dataset, Neck Ultrasound Dataset (NUSD), was introduced, containing 1,500 annotated ultrasound images across seven anatomical regions. Extensive experiments were conducted on both NUSD and the BUSI public dataset, comparing DEMAC-Net to state-of-the-art models using metrics such as Dice Similarity Coefficient (DSC) and Intersection over Union (IoU). On the NUSD dataset, DEMAC-Net achieved a mean DSC of 93.3%, outperforming existing models. For external validation on the BUSI dataset, it demonstrated superior generalization, achieving a DSC of 87.2% and a mean IoU of 77.4%, surpassing other advanced methods. Notably, DEMAC-Net displayed consistent segmentation stability across all tested structures. The proposed DEMAC-Net significantly improves segmentation accuracy for small nerves and complex anatomical structures in ultrasound images, outperforming existing methods in terms of accuracy and computational efficiency. This framework holds great potential for enhancing ultrasound-guided procedures, such as peripheral nerve blocks, by providing more precise anatomical localization, ultimately improving clinical outcomes.

Improving AI models for rare thyroid cancer subtype by text guided diffusion models.

Dai F, Yao S, Wang M, Zhu Y, Qiu X, Sun P, Qiu C, Yin J, Shen G, Sun J, Wang M, Wang Y, Yang Z, Sang J, Wang X, Sun F, Cai W, Zhang X, Lu H

pubmed logopapersMay 13 2025
Artificial intelligence applications in oncology imaging often struggle with diagnosing rare tumors. We identify significant gaps in detecting uncommon thyroid cancer types with ultrasound, where scarce data leads to frequent misdiagnosis. Traditional augmentation strategies do not capture the unique disease variations, hindering model training and performance. To overcome this, we propose a text-driven generative method that fuses clinical insights with image generation, producing synthetic samples that realistically reflect rare subtypes. In rigorous evaluations, our approach achieves substantial gains in diagnostic metrics, surpasses existing methods in authenticity and diversity measures, and generalizes effectively to other private and public datasets with various rare cancers. In this work, we demonstrate that text-guided image augmentation substantially enhances model accuracy and robustness for rare tumor detection, offering a promising avenue for more reliable and widespread clinical adoption.

Deep learning based on ultrasound images to predict platinum resistance in patients with epithelial ovarian cancer.

Su C, Miao K, Zhang L, Dong X

pubmed logopapersMay 13 2025
The study aimed at developing and validating a deep learning (DL) model based on the ultrasound imaging for predicting the platinum resistance of patients with epithelial ovarian cancer (EOC). 392 patients were enrolled in this retrospective study who had been diagnosed with EOC between 2014 and 2020 and underwent pelvic ultrasound before initial treatment. A DL model was developed to predict patients' platinum resistance, and the model underwent evaluation through receiver-operating characteristic (ROC) curves, decision curve analysis (DCA), and calibration curve. The ROC curves showed that the area under the curve (AUC) of the DL model for predicting patients' platinum resistance in the internal and external test sets were 0.86 (95% CI 0.83-0.90) and 0.86 (95% CI 0.84-0.89), respectively. The model demonstrated high clinical value through clinical decision curve analysis and exhibited good calibration efficiency in the training cohort. Kaplan-Meier analyses showed that the model's optimal cutoff value successfully distinguished between patients at high and low risk of recurrence, with hazard ratios of 3.1 (95% CI 2.3-4.1, P < 0.0001) and 2.9 (95% CI 2.3-3.9; P < 0.0001) in the high-risk group of the internal and external test sets, serving as a prognostic indicator. The DL model based on ultrasound imaging can predict platinum resistance in patients with EOC and may support clinicians in making the most appropriate treatment decisions.

Use of Artificial Intelligence in Recognition of Fetal Open Neural Tube Defect on Prenatal Ultrasound.

Kumar M, Arora U, Sengupta D, Nain S, Meena D, Yadav R, Perez M

pubmed logopapersMay 12 2025
To compare the axial cranial ultrasound images of normal and open neural tube defect (NTD) fetuses using a deep learning (DL) model and to assess its predictive accuracy in identifying open NTD.It was a prospective case-control study. Axial trans-thalamic fetal ultrasound images of participants with open fetal NTD and normal controls between 14 and 28 weeks of gestation were taken after consent. The images were divided into training, testing, and validation datasets randomly in the ratio of 70:15:15. The images were further processed and classified using DL convolutional neural network (CNN) transfer learning (TL) models. The TL models were trained for 50 epochs. The data was analyzed in terms of Cohen kappa score, accuracy score, area under receiver operating curve (AUROC) score, F1 score validity, sensitivity, and specificity of the test.A total of 59 cases and 116 controls were fully followed. Efficient net B0, Visual Geometry Group (VGG), and Inception V3 TL models were used. Both Efficient net B0 and VGG16 models gave similar high training and validation accuracy (100 and 95.83%, respectively). Using inception V3, the training and validation accuracy was 98.28 and 95.83%, respectively. The sensitivity and specificity of Efficient NetB0 was 100 and 89%, respectively, and was the best.The analysis of the changes in axial images of the fetal cranium using the DL model, Efficient Net B0 proved to be an effective model to be used in clinical application for the identification of open NTD. · Open spina bifida is often missed due to the nonrecognition of the lemon sign on ultrasound.. · Image classification using DL identified open spina bifida with excellent accuracy.. · The research is clinically relevant in low- and middle-income countries..

Artificial intelligence-assisted diagnosis of early allograft dysfunction based on ultrasound image and data.

Meng Y, Wang M, Niu N, Zhang H, Yang J, Zhang G, Liu J, Tang Y, Wang K

pubmed logopapersMay 12 2025
Early allograft dysfunction (EAD) significantly affects liver transplantation prognosis. This study evaluated the effectiveness of artificial intelligence (AI)-assisted methods in accurately diagnosing EAD and identifying its causes. The primary metric for assessing the accuracy was the area under the receiver operating characteristic curve (AUC). Accuracy, sensitivity, and specificity were calculated and analyzed to compare the performance of the AI models with each other and with radiologists. EAD classification followed the criteria established by Olthoff et al. A total of 582 liver transplant patients who underwent transplantation between December 2012 and June 2021 were selected. Among these, 117 patients (mean age 33.5 ± 26.5 years, 80 men) were evaluated. The ultrasound parameters, images, and clinical information of patients were extracted from the database to train the AI model. The AUC for the ultrasound-spectrogram fusion network constructed from four ultrasound images and medical data was 0.968 (95%CI: 0.940, 0.991), outperforming radiologists by 30% for all metrics. AI assistance significantly improved diagnostic accuracy, sensitivity, and specificity (P < 0.050) for both experienced and less-experienced physicians. EAD lacks efficient diagnosis and causation analysis methods. The integration of AI and ultrasound enhances diagnostic accuracy and causation analysis. By modeling only images and data related to blood flow, the AI model effectively analyzed patients with EAD caused by abnormal blood supply. Our model can assist radiologists in reducing judgment discrepancies, potentially benefitting patients with EAD in underdeveloped regions. Furthermore, it enables targeted treatment for those with abnormal blood supply.

Creation of an Open-Access Lung Ultrasound Image Database For Deep Learning and Neural Network Applications

Kumar, A., Nandakishore, P., Gordon, A. J., Baum, E., Madhok, J., Duanmu, Y., Kugler, J.

medrxiv logopreprintMay 11 2025
BackgroundLung ultrasound (LUS) offers advantages over traditional imaging for diagnosing pulmonary conditions, with superior accuracy compared to chest X-ray and similar performance to CT at lower cost. Despite these benefits, widespread adoption is limited by operator dependency, moderate interrater reliability, and training requirements. Deep learning (DL) could potentially address these challenges, but development of effective algorithms is hindered by the scarcity of comprehensive image repositories with proper metadata. MethodsWe created an open-source dataset of LUS images derived a multi-center study involving N=226 adult patients presenting with respiratory symptoms to emergency departments between March 2020 and April 2022. Images were acquired using a standardized scanning protocol (12-zone or modified 8-zone) with various point-of-care ultrasound devices. Three blinded researchers independently analyzed each image following consensus guidelines, with disagreements adjudicated to provide definitive interpretations. Videos were pre-processed to remove identifiers, and frames were extracted and resized to 128x128 pixels. ResultsThe dataset contains 1,874 video clips comprising 303,977 frames. Half of the participants (50%) had COVID-19 pneumonia. Among all clips, 66% contained no abnormalities, 18% contained B-lines, 4.5% contained consolidations, 6.4% contained both B-lines and consolidations, and 5.2% had indeterminate findings. Pathological findings varied significantly by lung zone, with anterior zones more frequently normal and less likely to show consolidations compared to lateral and posterior zones. DiscussionThis dataset represents one of the largest annotated LUS repositories to date, including both COVID-19 and non-COVID-19 patients. The comprehensive metadata and expert interpretations enhance its utility for DL applications. Despite limitations including potential device-specific characteristics and COVID-19 predominance, this repository provides a valuable resource for developing AI tools to improve LUS acquisition and interpretation.
Page 38 of 41404 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.