Enhancing Ultrasound-Based Diagnosis of Unilateral Diaphragmatic Paralysis with a Visual Transformer-Based Model.

Authors

Kalkanis A,Bakalis D,Testelmans D,Buyse B,Simos YV,Tsamis KI,Manis G

Abstract

This paper presents a novel methodology that combines a pre-trained Visual Transformer-Based Deep Model (ViT) with a custom denoising image filter for the diagnosis of Unilateral Diaphragmatic Paralysis (UDP) using Ultrasound (US) images. The ViT is employed to extract complex features from US images of 17 volunteers, capturing intricate patterns and details that are critical for accurate diagnosis. The extracted features are then fed into an ensemble learning model to determine the presence of UDP. The proposed framework achieves an average accuracy of 93.8% on a stratified 5-fold cross-validation, surpassing relevant state-of-the-art (SOTA) image classifiers. This high level of performance underscores the robustness and effectiveness of the framework, highlighting its potential as a prominent diagnostic tool in medical imaging.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.