Sort by:
Page 344 of 6636627 results

Pramono MBA, Andonotopo W, Bachnas MA, Dewantiningrum J, Sanjaya INH, Sulistyowati S, Stanojevic M, Kurjak A

pubmed logopapersJul 23 2025
Recent advancements in four-dimensional (4D) ultrasonography have enabled detailed observation of fetal behavior <i>in utero</i>, including facial movements, limb gestures, and stimulus responses. These developments have prompted renewed inquiry into whether such behaviors are merely reflexive or represent early signs of integrated neural function. However, the relationship between fetal movement patterns and conscious awareness remains scientifically uncertain and ethically contested. A systematic review was conducted in accordance with PRISMA 2020 guidelines. Four databases (PubMed, Scopus, Embase, Web of Science) were searched for English-language articles published from 2000 to 2025, using keywords including "fetal behavior," "4D ultrasound," "neurodevelopment," and "consciousness." Studies were included if they involved human fetuses, used 4D ultrasound or functional imaging modalities, and offered interpretation relevant to neurobehavioral or ethical analysis. A structured appraisal using AMSTAR-2 was applied to assess study quality. Data were synthesized narratively to map fetal behaviors onto developmental milestones and evaluate their interpretive limits. Seventy-four studies met inclusion criteria, with 23 rated as high-quality. Fetal behaviors such as yawning, hand-to-face movement, and startle responses increased in complexity between 24-34 weeks gestation. These patterns aligned with known neurodevelopmental events, including thalamocortical connectivity and cortical folding. However, no study provided definitive evidence linking observed behaviors to conscious experience. Emerging applications of artificial intelligence in ultrasound analysis were found to enhance pattern recognition but lack external validation. Fetal behavior observed via 4D ultrasound may reflect increasing neural integration but should not be equated with awareness. Interpretations must remain cautious, avoiding anthropomorphic assumptions. Ethical engagement requires attention to scientific limits, sociocultural diversity, and respect for maternal autonomy as imaging technologies continue to evolve.

Farnoush Bayatmakou, Reza Taleei, Nicole Simone, Arash Mohammadi

arxiv logopreprintJul 23 2025
Breast cancer (BC) remains one of the leading causes of cancer-related mortality among women, despite recent advances in Computer-Aided Diagnosis (CAD) systems. Accurate and efficient interpretation of multi-view mammograms is essential for early detection, driving a surge of interest in Artificial Intelligence (AI)-powered CAD models. While state-of-the-art multi-view mammogram classification models are largely based on Transformer architectures, their computational complexity scales quadratically with the number of image patches, highlighting the need for more efficient alternatives. To address this challenge, we propose Mammo-Mamba, a novel framework that integrates Selective State-Space Models (SSMs), transformer-based attention, and expert-driven feature refinement into a unified architecture. Mammo-Mamba extends the MambaVision backbone by introducing the Sequential Mixture of Experts (SeqMoE) mechanism through its customized SecMamba block. The SecMamba is a modified MambaVision block that enhances representation learning in high-resolution mammographic images by enabling content-adaptive feature refinement. These blocks are integrated into the deeper stages of MambaVision, allowing the model to progressively adjust feature emphasis through dynamic expert gating, effectively mitigating the limitations of traditional Transformer models. Evaluated on the CBIS-DDSM benchmark dataset, Mammo-Mamba achieves superior classification performance across all key metrics while maintaining computational efficiency.

Jonas RA, Nurmohamed NS, Crabtree TR, Aquino M, Jennings RS, Choi AD, Lin FY, Lee SE, Andreini D, Bax J, Cademartiri F, Chinnaiyan K, Chow BJW, Conte E, Cury R, Feuchtner G, Hadamitzky M, Kim YJ, Maffei E, Marques H, Plank F, Pontone G, van Rosendael AR, Villines TC, Al'Aref SJ, Baskaran L, Cho I, Danad I, Heo R, Lee JH, Rizvi A, Stuijfzand WJ, Sung JM, Park HB, Budoff MJ, Samady H, Shaw LJ, Stone PH, Virmani R, Narula J, Min JK, Earls JP, Chang HJ

pubmed logopapersJul 23 2025
<b>BACKGROUND</b>. Coronary artery calcium (CAC) scoring is used to stratify acute coronary syndrome (ACS) risk. Nonetheless, patients with a CAC score of zero (CAC<sub>0</sub>) remain at risk from noncalcified plaque components. <b>OBJECTIVE</b>. The purpose of this study was to explore CTA-derived coronary artery plaque characteristics in symptomatic patients with CAC<sub>0</sub> who subsequently have ACS through comparisons with patients with a CAC score greater than 0 (CAC<sub>> 0</sub>) who subsequently have ACS as well as with patients with CAC<sub>0</sub> who do not subsequently have ACS. <b>METHODS</b>. This study entailed a secondary retrospective analysis of prior prospective registry data. The international multicenter CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter) registry collected longitudinal observational data on symptomatic patients who underwent clinically indicated coronary CTA from January 2004 to May 2010. ICONIC (Incident Coronary Syndromes Identified by CT) was a nested cohort study conducted within CONFIRM that identified patients without known coronary artery disease (CAD) at the time of CTA who did and did not subsequently have ACS (i.e., the ACS and control groups, respectively) and who were propensity matched in a 1:1 ratio on the basis of CAD risk factors and CAD severity on CTA. The present ICONIC substudy selected matched patients in the ACS and control groups who both had documented CAC scores. CTA examinations were analyzed using artificial intelligence software for automated quantitative plaque assessment. In the ACS group, invasive angiography findings were used to identify culprit lesions. <b>RESULTS</b>. The present study included 216 patients (mean age, 55.6 years; 91 women and 125 men), with 108 patients in each of the ACS and control groups. In the ACS group, 23% (<i>n</i> = 25) of patients had CAC<sub>0</sub>. In the ACS group, culprit lesions in the subsets of patients with CAC<sub>0</sub> and CAC<sub>> 0</sub> showed no significant differences in fibrous, fibrofatty, or necrotic-core plaque volumes (<i>p</i> > .05). In the CAC<sub>0</sub> subset, patients with ACS, compared with control patients, had greater mean (± SD) fibrous plaque volume (29.4 ± 42.0 vs 5.5 ± 15.2 mm<sup>3</sup>, <i>p</i> < .001), fibrofatty plaque volume (27.3 ± 52.2 vs 1.3 ± 3.7 mm<sup>3</sup>, <i>p</i> < .001), and necrotic-core plaque volume (2.8 ± 6.4 vs 0.0 ± 0.1 mm<sup>3</sup>, <i>p</i> < .001). <b>CONCLUSION</b>. After propensity-score matching, 23% of patients with ACS had CAC<sub>0</sub>. Patients with CAC<sub>0</sub> in the ACS and control groups showed significant differences in volumes of noncalcified plaque components. <b>CLINICAL IMPACT</b>. Methods that identify and quantify noncalcified plaque forms may help characterize ACS risk in symptomatic patients with CAC<sub>0</sub>.

Jorgen Cani, Christos Diou, Spyridon Evangelatos, Vasileios Argyriou, Panagiotis Radoglou-Grammatikis, Panagiotis Sarigiannidis, Iraklis Varlamis, Georgios Th. Papadopoulos

arxiv logopreprintJul 23 2025
Automated X-ray inspection is crucial for efficient and unobtrusive security screening in various public settings. However, challenges such as object occlusion, variations in the physical properties of items, diversity in X-ray scanning devices, and limited training data hinder accurate and reliable detection of illicit items. Despite the large body of research in the field, reported experimental evaluations are often incomplete, with frequently conflicting outcomes. To shed light on the research landscape and facilitate further research, a systematic, detailed, and thorough comparative evaluation of recent Deep Learning (DL)-based methods for X-ray object detection is conducted. For this, a comprehensive evaluation framework is developed, composed of: a) Six recent, large-scale, and widely used public datasets for X-ray illicit item detection (OPIXray, CLCXray, SIXray, EDS, HiXray, and PIDray), b) Ten different state-of-the-art object detection schemes covering all main categories in the literature, including generic Convolutional Neural Network (CNN), custom CNN, generic transformer, and hybrid CNN-transformer architectures, and c) Various detection (mAP50 and mAP50:95) and time/computational-complexity (inference time (ms), parameter size (M), and computational load (GFLOPS)) metrics. A thorough analysis of the results leads to critical observations and insights, emphasizing key aspects such as: a) Overall behavior of the object detection schemes, b) Object-level detection performance, c) Dataset-specific observations, and d) Time efficiency and computational complexity analysis. To support reproducibility of the reported experimental results, the evaluation code and model weights are made publicly available at https://github.com/jgenc/xray-comparative-evaluation.

Hugues Roy, Reuben Dorent, Ninon Burgos

arxiv logopreprintJul 23 2025
Unsupervised anomaly detection (UAD) plays a crucial role in neuroimaging for identifying deviations from healthy subject data and thus facilitating the diagnosis of neurological disorders. In this work, we focus on Bayesian flow networks (BFNs), a novel class of generative models, which have not yet been applied to medical imaging or anomaly detection. BFNs combine the strength of diffusion frameworks and Bayesian inference. We introduce AnoBFN, an extension of BFNs for UAD, designed to: i) perform conditional image generation under high levels of spatially correlated noise, and ii) preserve subject specificity by incorporating a recursive feedback from the input image throughout the generative process. We evaluate AnoBFN on the challenging task of Alzheimer's disease-related anomaly detection in FDG PET images. Our approach outperforms other state-of-the-art methods based on VAEs (beta-VAE), GANs (f-AnoGAN), and diffusion models (AnoDDPM), demonstrating its effectiveness at detecting anomalies while reducing false positive rates.

Sneha George Gnanakalavathy, Hairil Abdul Razak, Robert Meertens, Jonathan E. Fieldsend, Xujiong Ye, Mohammed M. Abdelsamea

arxiv logopreprintJul 23 2025
In computed tomography (CT), achieving high image quality while minimizing radiation exposure remains a key clinical challenge. This paper presents CAPRI-CT, a novel causal-aware deep learning framework for Causal Analysis and Predictive Reasoning for Image Quality Optimization in CT imaging. CAPRI-CT integrates image data with acquisition metadata (such as tube voltage, tube current, and contrast agent types) to model the underlying causal relationships that influence image quality. An ensemble of Variational Autoencoders (VAEs) is employed to extract meaningful features and generate causal representations from observational data, including CT images and associated imaging parameters. These input features are fused to predict the Signal-to-Noise Ratio (SNR) and support counterfactual inference, enabling what-if simulations, such as changes in contrast agents (types and concentrations) or scan parameters. CAPRI-CT is trained and validated using an ensemble learning approach, achieving strong predictive performance. By facilitating both prediction and interpretability, CAPRI-CT provides actionable insights that could help radiologists and technicians design more efficient CT protocols without repeated physical scans. The source code and dataset are publicly available at https://github.com/SnehaGeorge22/capri-ct.

Lei Zhu, Jun Zhou, Rick Siow Mong Goh, Yong Liu

arxiv logopreprintJul 23 2025
Foundation models have recently gained tremendous popularity in medical image analysis. State-of-the-art methods leverage either paired image-text data via vision-language pre-training or unpaired image data via self-supervised pre-training to learn foundation models with generalizable image features to boost downstream task performance. However, learning foundation models exclusively on either paired or unpaired image data limits their ability to learn richer and more comprehensive image features. In this paper, we investigate a novel task termed semi-supervised vision-language pre-training, aiming to fully harness the potential of both paired and unpaired image data for foundation model learning. To this end, we propose MaskedCLIP, a synergistic masked image modeling and contrastive language-image pre-training framework for semi-supervised vision-language pre-training. The key challenge in combining paired and unpaired image data for learning a foundation model lies in the incompatible feature spaces derived from these two types of data. To address this issue, we propose to connect the masked feature space with the CLIP feature space with a bridge transformer. In this way, the more semantic specific CLIP features can benefit from the more general masked features for semantic feature extraction. We further propose a masked knowledge distillation loss to distill semantic knowledge of original image features in CLIP feature space back to the predicted masked image features in masked feature space. With this mutually interactive design, our framework effectively leverages both paired and unpaired image data to learn more generalizable image features for downstream tasks. Extensive experiments on retinal image analysis demonstrate the effectiveness and data efficiency of our method.

Zhu Y, Liu Y, Zhao Y, Lu Q, Wang W, Chen Y, Ji P, Chen T

pubmed logopapersJul 23 2025
To develop and assess the performance of an anatomically based multitask deep learning radiomics nomogram (AMDRN) system to predict implant failure risk before maxillary sinus floor elevation (MSFE) while incorporating automated segmentation of key anatomical structures. We retrospectively collected patients' preoperative cone beam computed tomography (CBCT) images and electronic medical records (EMRs). First, the nn-UNet v2 model was optimized to segment the maxillary sinus (MS), Schneiderian membrane (SM), and residual alveolar bone (RAB). Based on the segmentation mask, a deep learning model (3D-Attention-ResNet) and a radiomics model were developed to extract 3D features from CBCT scans, generating the DL Score, and Rad Score. Significant clinical features were also extracted from EMRs to build a clinical model. These components were then integrated using logistic regression (LR) to create the AMDRN model, which includes a visualization module to support clinical decision-making. Segmentation results for MS, RAB, and SM achieved high DICE coefficients on the test set, with values of 99.50% ± 0.84%, 92.53% ± 3.78%, and 91.58% ± 7.16%, respectively. On an independent test set, the Clinical model, Radiomics model, 3D-DL model, and AMDRN model achieved prediction accuracies of 60%, 76%, 82%, and 90%, respectively, with AMDRN achieving the highest AUC of 93%. The AMDRN system enables efficient preoperative prediction of implant failure risk in MSFE and accurate segmentation of critical anatomical structures, supporting personalized treatment planning and clinical risk management.

Zhang R, Jiang C, Li F, Li L, Qin X, Yang J, Lv H, Ai T, Deng L, Huang C, Xing H, Wu F

pubmed logopapersJul 23 2025
The study investigates the correlation between CD3 T-cell expression levels and cervical cancer (CC) while developing a magnetic resonance (MR) imaging-based radiomics model for preoperative prediction of CD3 T-cell expression levels. Prognostic correlations between CD3D, CD3E, and CD3G gene expressions and various cancers were analyzed using the Cancer Genome Atlas (TCGA) database. Protein-protein interaction (PPI) analysis via the STRING database identified associations between these genes and T lymphocyte activity. Gene Set Enrichment Analysis (GSEA) revealed immune pathway enrichment by categorizing genes based on CD3D expression levels. Correlations between immune checkpoint molecules and CD3 complex genes were also assessed. The study retrospectively included 202 patients with pathologically confirmed early-stage CC who underwent preoperative MRI, divided into training and test groups. Radiomic features were extracted from the whole-lesion tumor region of interest (ROI<sub>tumor</sub>) and from peritumoral regions with 3 mm and 5 mm margins (ROI<sub>3mm</sub> and ROI<sub>5mm</sub>, respectively). Various machine learning algorithms, including Support Vector Machine (SVM), Logistic Regression, Random Forest, AdaBoost, and Decision Tree, were used to construct radiomics models based on different ROIs, and diagnostic performances were compared to identify the optimal approach. The best-performing algorithm was combined with intra- and peritumoral features and clinically relevant independent risk factors to develop a comprehensive predictive model. Analysis of the TCGA database demonstrated significant associations between CD3D, CD3E, and CD3G expressions and several cancers, including CC (p < 0.05). PPI analysis highlighted connections between these genes and T lymphocyte function, while GSEA indicated enrichment of immune-related pathways linked to CD3D. Immune checkpoint correlations showed positive associations with CD3 complex genes. Radiomics analysis selected 18 features from ROI<sub>tumor</sub> and ROI<sub>3mm</sub> across MRI sequences. The SVM algorithm achieved the highest predictive performance for CD3 T-cell expression status, with an area under the curve (AUC) of 0.93 in the training group and 0.92 in the test group. This MR-based radiomics model effectively predicts CD3 expression status in patients with early-stage CC, offering a non-invasive tool for preoperative assessment of CD3 expression, but its clinical utility needs further prospective validation.

Ajanovic S, Jobst B, Jiménez J, Quesada R, Santos F, Carandell F, Lopez-Azorín M, Valverde E, Ybarra M, Bravo MC, Petrone P, Sial H, Muñoz D, Agut T, Salas B, Carreras N, Alarcón A, Iriondo M, Luaces C, Sidat M, Zandamela M, Rodrigues P, Graça D, Ngovene S, Bramugy J, Cossa A, Mucasse C, Buck WC, Arias S, El Abbass C, Tligi H, Barkat A, Ibáñez A, Parrilla M, Elvira L, Calvo C, Pellicer A, Cabañas F, Bassat Q

pubmed logopapersJul 23 2025
Meningitis diagnosis requires a lumbar puncture (LP) to obtain cerebrospinal fluid (CSF) for a laboratory-based analysis. In high-income settings, LPs are part of the systematic approach to screen for meningitis, and most yield negative results. In low- and middle-income settings, LPs are seldom performed, and suspected cases are often treated empirically. The aim of this study was to validate a non-invasive transfontanellar white blood cell (WBC) counter in CSF to screen for meningitis. We conducted a prospective study across three Spanish hospitals, one Mozambican and one Moroccan hospital (2020-2023). We included patients under 24 months with suspected meningitis, an open fontanelle, and a LP performed within 24 h from recruitment. High-resolution-ultrasound (HRUS) images of the CSF were obtained using a customized probe. A deep-learning model was trained to classify CSF patterns based on LPs WBC counts, using a 30cells/mm<sup>3</sup> threshold. The algorithm was applied to 3782 images from 76 patients. It correctly classified 17/18 CSFs with <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>≥</mo></math> 30 WBC, and 55/58 controls (sensitivity 94.4%, specificity 94.8%). The only false negative was paired to a traumatic LP with 40 corrected WBC/mm<sup>3</sup>. This non-invasive device could be an accurate tool for screening meningitis in neonates and young infants, modulating LP indications. Our non-invasive, high-resolution ultrasound device achieved 94% accuracy in detecting elevated leukocyte counts in neonates and infants with suspected meningitis, compared to the gold standard (lumbar punctures and laboratory analysis). This first-in-class screening device introduces the first non-invasive method for neonatal and infant meningitis screening, potentially modulating lumbar puncture indications. This technology could substantially reduce lumbar punctures in low-suspicion cases and provides a viable alternative critically ill patients worldwide or in settings where lumbar punctures are unfeasible, especially in low-income countries).
Page 344 of 6636627 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.