Sort by:
Page 342 of 6636627 results

Alshenaifi R, Alqahtani Y, Ma S, Umapathy S

pubmed logopapersJul 24 2025
Kidney stones, a prevalent urological condition, associated with acute pain requires prompt and precise diagnosis for optimal therapeutic intervention. While computed tomography (CT) imaging remains the definitive diagnostic modality, manual interpretation of these images is a labor-intensive and error-prone process. This research endeavors to introduce Artificial Intelligence based methodology for automated detection and classification of renal calculi within the CT images. To identify the CT images with kidney stones, a comprehensive exploration of various ML and DL architectures, along with rigorous experimentation with diverse hyperparameters, was undertaken to refine the model's performance. The proposed workflow involves two key stages: (1) precise segmentation of pathological regions of interest (ROIs) using DL algorithms, and (2) binary classification of the segmented ROIs using both ML and DL models. The SwinTResNet model, optimized using the RMSProp algorithm with a learning rate of 0.0001, demonstrated optimal performance, achieving a training accuracy of 97.27% and a validation accuracy of 96.16% in the segmentation task. The Vision Transformer (ViT) architecture, when coupled with the ADAM optimizer and a learning rate of 0.0001, exhibited robust convergence and consistently achieved the highest performance metrics. Specifically, the model attained a peak training accuracy of 96.63% and a validation accuracy of 95.67%. The results demonstrate the potential of this integrated framework to enhance diagnostic accuracy and efficiency, thereby supporting improved clinical decision-making in the management of kidney stones.

Lu Y, Xie X, Wang S, Liu Q

pubmed logopapersJul 24 2025
Recent advances have applied diffusion model (DM) to magnetic resonance imaging (MRI) reconstruction, demonstrating impressive performance. However, current DM-based MRI reconstruction methods suffer from two critical limitations. First, they model image features at the pixel-level and require numerous iterations for the final image reconstruction, leading to high computational costs. Second, most of these methods operate in the image domain, which cannot avoid the introduction of secondary artifacts. To address these challenges, we propose a novel latent-k-space refinement diffusion model (LRDM) for MRI reconstruction. Specifically, we encode the original k-space data into a highly compact latent space to capture the primary features for accelerated acquisition and apply DM in the low-dimensional latent-k-space to generate prior knowledge. The compact latent space allows the DM to require only 4 iterations to generate accurate priors. To compensate for the inevitable loss of detail during latent-k-space diffusion, we incorporate an additional diffusion model focused exclusively on refining high-frequency structures and features. The results from both models are then decoded and combined to obtain the final reconstructed image. Experimental results demonstrate that the proposed method significantly reduces reconstruction time while delivering comparable image reconstruction quality to conventional DM-based approaches.&#xD.

Shen Zhu, Yinzhu Jin, Tyler Spears, Ifrah Zawar, P. Thomas Fletcher

arxiv logopreprintJul 24 2025
We propose image-to-image diffusion models that are designed to enhance the realism and details of generated brain images by introducing sharp edges, fine textures, subtle anatomical features, and imaging noise. Generative models have been widely adopted in the biomedical domain, especially in image generation applications. Latent diffusion models achieve state-of-the-art results in generating brain MRIs. However, due to latent compression, generated images from these models are overly smooth, lacking fine anatomical structures and scan acquisition noise that are typically seen in real images. This work formulates the realism enhancing and detail adding process as image-to-image diffusion models, which refines the quality of LDM-generated images. We employ commonly used metrics like FID and LPIPS for image realism assessment. Furthermore, we introduce new metrics to demonstrate the realism of images generated by RealDeal in terms of image noise distribution, sharpness, and texture.

Lin SH, Chen YH, Yang MH, Lin CW, Lu AK, Yang CT, Chang YH, Chen BY, Hsieh S, Lin SH

pubmed logopapersJul 24 2025
Psychological resilience is influenced by both psychological and biological factors. However, the potential of using DNA methylation (DNAm) probes and brain imaging variables to predict psychological resilience remains unclear. This study aimed to investigate DNAm, structural magnetic resonance imaging (sMRI), and diffusion tensor imaging (DTI) as biomarkers for psychological resilience. Additionally, we evaluated the ability of epigenetic and imaging markers to distinguish between individuals with low and high resilience using machine learning algorithms. A total of 130 young adults assessed with the Connor-Davidson Resilience Scale (CD-RISC) were divided into high and low psychological resilience groups. We utilized two feature selection algorithms, the Boruta and variable selection using random forest (varSelRF), to identify important variables based on nine for DNAm, sixty-eight for gray matter volume (GMV) measured with sMRI, and fifty-four diffusion indices of DTI. We constructed machine learning models to identify low resilience individuals using the selected variables. The study identified thirteen variables (five DNAm, five GMV, and three DTI diffusion indices) from feature selection methods. We utilized the selected variables based on 10-fold cross validation using four machine learning models for low resilience (AUC = 0.77-0.82). In interaction analysis, we identified cg03013609 had a stronger interaction with cg17682313 and the rostral middle frontal gyrus in the right hemisphere for psychological resilience. Our findings supported the concept that DNAm, sMRI, and DTI signatures can identify individuals with low psychological resilience. These combined epigenetic imaging markers demonstrated high discriminative abilities for low psychological resilience using machine learning models.

Noble PA

pubmed logopapersJul 24 2025
To develop a standardized, real-time feedback system for monitoring urinary stone fragmentation during shockwave lithotripsy (SWL), thereby optimizing treatment efficacy and minimizing patient risk. A two-pronged approach was implemented to quantify stone fragmentation in C-arm X-ray images. First, the initial pre-treatment stone image was compared to subsequent images to measure stone area loss. Second, a Convolutional Neural Network (CNN) was trained to estimate the probability that an image contains a urinary stone. These two criteria were integrated to create a real-time signaling system capable of evaluating shockwave efficacy during SWL. The system was developed using data from 522 shockwave treatments encompassing 4,057 C-arm X-ray images. The combined area-loss metric and CNN output enabled consistent real-time assessment of stone fragmentation, providing actionable feedback to guide SWL in diverse clinical contexts. The proposed system offers a novel and reliable method for monitoring of urinary stone fragmentation during SWL. By helping to balance treatment efficacy with patient safety, it holds significant promise for semi-automated SWL platforms, particularly in resource-limited or remote environments such as arid regions and extended space missions.

Xie Y, Zhang T, Liu Z, Yan Z, Yu Y, Qu Q, Gu C, Ding C, Zhang X

pubmed logopapersJul 24 2025
To develop two distinct models for predicting microvascular invasion (MVI) and vessels encapsulating tumor clusters (VETC) based on habitat imaging, and to integrate these models for prognosis assessment. In this multicenter retrospective study, patients from two different institutions were enrolled and categorized for MVI (n=295) and VETC (n=276) prediction. Tumor and peritumoral regions on hepatobiliary phase images were segmented into subregions, from which all relevant features were extracted. The MVI and VETC predictive models were constructed by analyzing these features using various machine learning algorithms, and classifying patients into high-risk and low-risk groups. Cox regression analysis was utilized to identify risk factors for early recurrence. The MVI and VETC prediction models demonstrated excellent performance in both the training and external validation cohorts (AUC: 0.961 and 0.838 for MVI; 0.931 and 0.820 for VETC). Based on model predictions, patients were classified into high-risk group (High-risk MVI/ High-risk VETC), medium-risk group (High-risk MVI/Low-risk VETC or Low-risk MVI/High-risk VETC), and low-risk group (Low-risk MVI/Low-risk VETC). Multivariable Cox regression analysis revealed that risk group, number of tumors, and gender were independent predictors of early recurrence. Models based on habitat imaging can be used for the preoperative, noninvasive prediction of MVI and VETC, offering valuable stratification and diagnostic insights for HCC patients.

Liu Q, Liang Z, Qi X, Yang S, Fu B, Dong H

pubmed logopapersJul 24 2025
This study aims to explore a novel approach for predicting cervical lymph node metastasis (CLNM) and pathological subtypes in oral squamous cell carcinoma (OSCC) by comparing deep learning (DL) and habitat analysis models based on contrast-enhanced CT (CECT). A retrospective analysis was conducted using CECT images from patients diagnosed with OSCC via paraffin pathology at the Second Affiliated Hospital of Dalian Medical University. All patients underwent primary tumor resection and cervical lymph node dissection, with a total of 132 cases included. A DL model was developed by analysing regions of interest (ROIs) in the CECT images using a convolutional neural network (CNN). For habitat analysis, the ROI images were segmented into 3 regions using K-means clustering, and features were selected through a fully connected neural network (FCNN) to build the model. A separate clinical model was constructed based on nine clinical features, including age, gender, and tumor location. Using LNM and pathological subtypes as endpoints, the predictive performance of the clinical model, DL model, habitat analysis model, and a combined clinical + habitat model was evaluated using confusion matrices and receiver operating characteristic (ROC) curves. For LNM prediction, the combined clinical + habitat model achieved an area under the ROC curve (AUC) of 0.97. For pathological subtype prediction, the AUC was 0.96. The DL model yielded an AUC of 0.83 for LNM prediction and 0.91 for pathological subtype classification. The clinical model alone achieved an AUC of 0.94 for predicting LNM. The integrated habitat-clinical model demonstrates improved predictive performance. Combining habitat analysis with clinical features offers a promising approach for the prediction of oral cancer. The habitat-clinical integrated model may assist clinicians in performing accurate preoperative prognostic assessments in patients with oral cancer.

Hasan MS, Komol MMR, Fahim F, Islam J, Pervin T, Hasan MM

pubmed logopapersJul 24 2025
A significant obstacle in brain tumor treatment planning is determining the tumor's actual size. Magnetic resonance imaging (MRI) is one of the first-line brain tumor diagnosis. It takes a lot of effort and mostly depends on the operator's experience to manually separate the size of a brain tumor from 3D MRI volumes. Machine learning has been vastly enhanced by deep learning and computer-aided tumor detection methods. This study proposes to investigate the architecture of object detectors, specifically focusing on search efficiency. In order to provide more specificity, our goal is to effectively explore the Feature Pyramid Network (FPN) and prediction head of a straightforward anchor-free object detector called DEEP Q-NAS. The study utilized the BraTS 2021 dataset which includes multi-parametric magnetic resonance imaging (mpMRI) scans. The architecture we found outperforms the latest object detection models (like Fast R-CNN, YOLOv7, and YOLOv8) by 2.2 to 7 points with average precision (AP) on the MS COCO 2017 dataset. It has a similar level of complexity and less memory usage, which shows how effective our proposed NAS is for object detection. The DEEP Q-NAS with ResNeXt-152 model demonstrates the highest level of detection accuracy, achieving a rate of 99%.

Pascal Spiegler, Taha Koleilat, Arash Harirpoush, Corey S. Miller, Hassan Rivaz, Marta Kersten-Oertel, Yiming Xiao

arxiv logopreprintJul 24 2025
Pancreatic cancer carries a poor prognosis and relies on endoscopic ultrasound (EUS) for targeted biopsy and radiotherapy. However, the speckle noise, low contrast, and unintuitive appearance of EUS make segmentation of pancreatic tumors with fully supervised deep learning (DL) models both error-prone and dependent on large, expert-curated annotation datasets. To address these challenges, we present TextSAM-EUS, a novel, lightweight, text-driven adaptation of the Segment Anything Model (SAM) that requires no manual geometric prompts at inference. Our approach leverages text prompt learning (context optimization) through the BiomedCLIP text encoder in conjunction with a LoRA-based adaptation of SAM's architecture to enable automatic pancreatic tumor segmentation in EUS, tuning only 0.86% of the total parameters. On the public Endoscopic Ultrasound Database of the Pancreas, TextSAM-EUS with automatic prompts attains 82.69% Dice and 85.28% normalized surface distance (NSD), and with manual geometric prompts reaches 83.10% Dice and 85.70% NSD, outperforming both existing state-of-the-art (SOTA) supervised DL models and foundation models (e.g., SAM and its variants). As the first attempt to incorporate prompt learning in SAM-based medical image segmentation, TextSAM-EUS offers a practical option for efficient and robust automatic EUS segmentation.

Dhruv Jain, Romain Modzelewski, Romain Herault, Clement Chatelain, Eva Torfeh, Sebastien Thureau

arxiv logopreprintJul 24 2025
In data-scarce scenarios, deep learning models often overfit to noise and irrelevant patterns, which limits their ability to generalize to unseen samples. To address these challenges in medical image segmentation, we introduce Diff-UMamba, a novel architecture that combines the UNet framework with the mamba mechanism to model long-range dependencies. At the heart of Diff-UMamba is a noise reduction module, which employs a signal differencing strategy to suppress noisy or irrelevant activations within the encoder. This encourages the model to filter out spurious features and enhance task-relevant representations, thereby improving its focus on clinically significant regions. As a result, the architecture achieves improved segmentation accuracy and robustness, particularly in low-data settings. Diff-UMamba is evaluated on multiple public datasets, including medical segmentation decathalon dataset (lung and pancreas) and AIIB23, demonstrating consistent performance gains of 1-3% over baseline methods in various segmentation tasks. To further assess performance under limited data conditions, additional experiments are conducted on the BraTS-21 dataset by varying the proportion of available training samples. The approach is also validated on a small internal non-small cell lung cancer dataset for the segmentation of gross tumor volume in cone beam CT, where it achieves a 4-5% improvement over baseline.
Page 342 of 6636627 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.