Anatomical Considerations for Achieving Optimized Outcomes in Individualized Cochlear Implantation.
Authors
Affiliations (1)
Affiliations (1)
- Department of Otorhinolaryngology, Hannover Medical School.
Abstract
Machine learning models can assist with the selection of electrode arrays required for optimal insertion angles. Cochlea implantation is a successful therapy in patients with severe to profound hearing loss. The effectiveness of a cochlea implant depends on precise insertion and positioning of electrode array within the cochlea, which is known for its variability in shape and size. Preoperative imaging like CT or MRI plays a significant role in evaluating cochlear anatomy and planning the surgical approach to optimize outcomes. In this study, preoperative and postoperative CT and CBCT data of 558 cochlea-implant patients were analyzed in terms of the influence of anatomical factors and insertion depth onto the resulting insertion angle. Machine learning models can predict insertion depths needed for optimal insertion angles, with performance improving by including cochlear dimensions in the models. A simple linear regression using just the insertion depth explained 88% of variability, whereas adding cochlear length or diameter and width further improved predictions up to 94%.