Deep Learning-Based Signal Amplification of T1-Weighted Single-Dose Images Improves Metastasis Detection in Brain MRI.

Authors

Haase R,Pinetz T,Kobler E,Bendella Z,Zülow S,Schievelkamp AH,Schmeel FC,Panahabadi S,Stylianou AM,Paech D,Foltyn-Dumitru M,Wagner V,Schlamp K,Heussel G,Holtkamp M,Heussel CP,Vahlensieck M,Luetkens JA,Schlemmer HP,Haubold J,Radbruch A,Effland A,Deuschl C,Deike K

Affiliations (1)

  • From the Department of Diagnostic and Interventional Neuroradiology, University Hospital Bonn, Bonn, Germany (R.H., E.K., Z.B., S.Z., A.-H.S., F.C.S., S.P., A.M.S., D.P., A.R., K.D.); Institute of Applied Mathematics, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany (T.P., A.E.); Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (D.P.); Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany (D.P., H.-P.S.); Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany (M.F.-D., K.S., G.H., C.P.H.); Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany (M.F.-D.); Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany (V.W., C.P.H.); Institute for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany (M.H., J.H., C.D.); Translational Lung Research Center Heidelberg (TLRC), Member of the German Center of Lung Research (DZL), Heidelberg, Germany (C.P.H.); Praxisnetz, Radiology and Nuclear Medicine, Bonn, Germany (M.V.); Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany (J.A.L.); German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers, Bonn, Germany (A.R., K.D.); and Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA (K.D.).

Abstract

Double-dose contrast-enhanced brain imaging improves tumor delineation and detection of occult metastases but is limited by concerns about gadolinium-based contrast agents' effects on patients and the environment. The purpose of this study was to test the benefit of a deep learning-based contrast signal amplification in true single-dose T1-weighted (T-SD) images creating artificial double-dose (A-DD) images for metastasis detection in brain magnetic resonance imaging. In this prospective, multicenter study, a deep learning-based method originally trained on noncontrast, low-dose, and T-SD brain images was applied to T-SD images of 30 participants (mean age ± SD, 58.5 ± 11.8 years; 23 women) acquired externally between November 2022 and June 2023. Four readers with different levels of experience independently reviewed T-SD and A-DD images for metastases with 4 weeks between readings. A reference reader reviewed additionally acquired true double-dose images to determine any metastases present. Performances were compared using Mid-p McNemar tests for sensitivity and Wilcoxon signed rank tests for false-positive findings. All readers found more metastases using A-DD images. The 2 experienced neuroradiologists achieved the same level of sensitivity using T-SD images (62 of 91 metastases, 68.1%). While the increase in sensitivity using A-DD images was only descriptive for 1 of them (A-DD: 65 of 91 metastases, +3.3%, P = 0.424), the second neuroradiologist benefited significantly with a sensitivity increase of 12.1% (73 of 91 metastases, P = 0.008). The 2 less experienced readers (1 resident and 1 fellow) both found significantly more metastases on A-DD images (resident, T-SD: 61.5%, A-DD: 68.1%, P = 0.039; fellow, T-SD: 58.2%, A-DD: 70.3%, P = 0.008). They were therefore able to use A-DD images to increase their sensitivity to the neuroradiologists' initial level on regular T-SD images. False-positive findings did not differ significantly between sequences. However, readers showed descriptively more false-positive findings on A-DD images. The benefit in sensitivity particularly applied to metastases ≤5 mm (5.7%-17.3% increase in sensitivity). A-DD images can improve the detectability of brain metastases without a significant loss of precision and could therefore represent a potentially valuable addition to regular single-dose brain imaging.

Topics

Deep LearningBrain NeoplasmsMagnetic Resonance ImagingJournal ArticleMulticenter Study

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.