Sort by:
Page 29 of 99986 results

AI-based prediction of best-corrected visual acuity in patients with multiple retinal diseases using multimodal medical imaging.

Dong L, Gao W, Niu L, Deng Z, Gong Z, Li HY, Fang LJ, Shao L, Zhang RH, Zhou WD, Ma L, Wei WB

pubmed logopapersAug 14 2025
This study evaluated the performance of artificial intelligence (AI) algorithms in predicting best-corrected visual acuity (BCVA) for patients with multiple retinal diseases, using multimodal medical imaging including macular optical coherence tomography (OCT), optic disc OCT and fundus images. The goal was to enhance clinical BCVA evaluation efficiency and precision. A retrospective study used data from 2545 patients (4028 eyes) for training, 896 (1006 eyes) for testing and 196 (200 eyes) for internal validation, with an external prospective dataset of 741 patients (1381 eyes). Single-modality analyses employed different backbone networks and feature fusion methods, while multimodal fusion combined modalities using average aggregation, concatenation/reduction and maximum feature selection. Predictive accuracy was measured by mean absolute error (MAE), root mean squared error (RMSE) and R² score. Macular OCT achieved better single-modality prediction than optic disc OCT, with MAE of 3.851 vs 4.977 and RMSE of 7.844 vs 10.026. Fundus images showed an MAE of 3.795 and RMSE of 7.954. Multimodal fusion significantly improved accuracy, with the best results using average aggregation, achieving an MAE of 2.865, RMSE of 6.229 and R² of 0.935. External validation yielded an MAE of 8.38 and RMSE of 10.62. Multimodal fusion provided the most accurate BCVA predictions, demonstrating AI's potential to improve clinical evaluation. However, challenges remain regarding disease diversity and applicability in resource-limited settings.

Artificial Intelligence based fractional flow reserve.

Bednarek A, Gąsior P, Jaguszewski M, Buszman PP, Milewski K, Hawranek M, Gil R, Wojakowski W, Kochman J, Tomaniak M

pubmed logopapersAug 14 2025
Fractional flow reserve (FFR) - a physiological indicator of coronary stenosis significance - has now become a widely used parameter also in the guidance of percutaneous coronary intervention (PCI). Several studies have shown the superiority of FFR compared to visual assessment, contributing to the reduction in clinical endpoints. However, the current approach to FFR assessment requires coronary instrumentation with a dedicated pressure wire and thus increasing invasiveness, cost, and duration of the procedure. Alternative, noninvasive methods of FFR assessment based on computational fluid dynamics are being widely tested; these approaches are generally not fully automated and may sometimes require substantial computational power. Nowadays, one of the most rapidly expanding fields in medicine is the use of artificial intelligence (AI) in therapy optimization, diagnosis, treatment, and risk stratification. AI usage contributes to the development of more sophisticated methods of imaging analysis and allows for the derivation of clinically important parameters in a faster and more accurate way. Over the recent years, AI utility in deriving FFR in a noninvasive manner has been increasingly reported. In this review, we critically summarize current knowledge in the field of AI-derived FFR based on data from computed tomography angiography, invasive angiography, optical coherence tomography, and intravascular ultrasound. Available solutions, possible future directions in optimizing cathlab performance, including the use of mixed reality, as well as current limitations standing behind the wide adoption of these techniques, are overviewed.

Medico 2025: Visual Question Answering for Gastrointestinal Imaging

Sushant Gautam, Vajira Thambawita, Michael Riegler, Pål Halvorsen, Steven Hicks

arxiv logopreprintAug 14 2025
The Medico 2025 challenge addresses Visual Question Answering (VQA) for Gastrointestinal (GI) imaging, organized as part of the MediaEval task series. The challenge focuses on developing Explainable Artificial Intelligence (XAI) models that answer clinically relevant questions based on GI endoscopy images while providing interpretable justifications aligned with medical reasoning. It introduces two subtasks: (1) answering diverse types of visual questions using the Kvasir-VQA-x1 dataset, and (2) generating multimodal explanations to support clinical decision-making. The Kvasir-VQA-x1 dataset, created from 6,500 images and 159,549 complex question-answer (QA) pairs, serves as the benchmark for the challenge. By combining quantitative performance metrics and expert-reviewed explainability assessments, this task aims to advance trustworthy Artificial Intelligence (AI) in medical image analysis. Instructions, data access, and an updated guide for participation are available in the official competition repository: https://github.com/simula/MediaEval-Medico-2025

A novel unified Inception-U-Net hybrid gravitational optimization model (UIGO) incorporating automated medical image segmentation and feature selection for liver tumor detection.

Banerjee T, Singh DP, Kour P, Swain D, Mahajan S, Kadry S, Kim J

pubmed logopapersAug 14 2025
Segmenting liver tumors in medical imaging is pivotal for precise diagnosis, treatment, and evaluating therapy outcomes. Even with modern imaging technologies, fully automated segmentation systems have not overcome the challenge posed by the diversity in the shape, size, and texture of liver tumors. Such delays often hinder clinicians from making timely and accurate decisions. This study tries to resolve these issues with the development of UIGO. This new deep learning model merges U-Net and Inception networks, incorporating advanced feature selection and optimization strategies. The goals of UIGO include achieving high precision segmented results while maintaining optimal computational requirements for efficiency in real-world clinical use. Publicly available liver tumor segmentation datasets were used for testing the model: LiTS (Liver Tumor Segmentation Challenge), CHAOS (Combined Healthy Abdominal Organ Segmentation), and 3D-IRCADb1 (3D-IRCAD liver dataset). With various tumor shapes and sizes ranging across different imaging modalities such as CT and MRI, these datasets ensured comprehensive testing of UIGO's performance in diverse clinical scenarios. The experimental outcomes show the effectiveness of UIGO with a segmentation accuracy of 99.93%, an AUC score of 99.89%, a Dice Coefficient of 0.997, and an IoU of 0.998. UIGO demonstrated higher performance than other contemporary liver tumor segmentation techniques, indicating the system's ability to enhance clinician's ability to deliver precise and prompt evaluations at a lower computational expense. This study underscores the effort towards advanced streamlined, dependable, and clinically useful devices for liver tumor segmentation in medical imaging.

Healthcare and cutting-edge technology: Advancements, challenges, and future prospects.

Singhal V, R S, Singhal S, Tiwari A, Mangal D

pubmed logopapersAug 14 2025
The high-level integration of technology in health care has radically changed the process of patient care, diagnosis, treatment, and health outcomes. This paper discusses significant technological advances: AI for medical imaging to detect early disease stages; robotic surgery with precision and minimally invasive techniques; telemedicine for remote monitoring and virtual consultation; personalized medicine through genomic analysis; and blockchain in secure and transparent handling of health data. Every section in the paper discusses the underlying principles, advantages, and disadvantages associated with such technologies, supported by appropriate case studies like deploying AI in radiology to enhance cancer diagnosis or robotic surgery to enhance accuracy in surgery and blockchain technology in electronic health records to enable data integrity and security. The paper also discusses key ethical issues, including risks to data privacy, algorithmic bias in AI-based diagnosis, patient consent problems in genomic medicine, and regulatory issues blocking the large-scale adoption of digital health solutions. The article also includes some recommended avenues of future research in the spaces where interdisciplinary cooperation, effective cybersecurity frameworks, and policy transformations are urgently required to ensure that new healthcare technology adoption is ethical and responsible. The work is aimed at delivering important information for policymakers and researchers who are interested in the changing roles of technology to improve healthcare provision and patient outcomes, as well as healthcare practitioners.

Exploring the potential of generative artificial intelligence in medical image synthesis: opportunities, challenges, and future directions.

Khosravi B, Purkayastha S, Erickson BJ, Trivedi HM, Gichoya JW

pubmed logopapersAug 14 2025
Generative artificial intelligence has emerged as a transformative force in medical imaging since 2022, enabling the creation of derivative synthetic datasets that closely resemble real-world data. This Viewpoint examines key aspects of synthetic data, focusing on its advancements, applications, and challenges in medical imaging. Various generative artificial intelligence image generation paradigms, such as physics-informed and statistical models, and their potential to augment and diversify medical research resources are explored. The promises of synthetic datasets, including increased diversity, privacy preservation, and multifunctionality, are also discussed, along with their ability to model complex biological phenomena. Next, specific applications using synthetic data such as enhancing medical education, augmenting rare disease datasets, improving radiology workflows, and enabling privacy-preserving multicentre collaborations are highlighted. The challenges and ethical considerations surrounding generative artificial intelligence, including patient privacy, data copying, and potential biases that could impede clinical translation, are also addressed. Finally, future directions for research and development in this rapidly evolving field are outlined, emphasising the need for robust evaluation frameworks and responsible utilisation of generative artificial intelligence in medical imaging.

Exploring Radiologists' Use of AI Chatbots for Assistance in Image Interpretation: Patterns of Use and Trust Evaluation.

Alarifi M

pubmed logopapersAug 13 2025
This study investigated radiologists' perceptions of AI-generated, patient-friendly radiology reports across three modalities: MRI, CT, and mammogram/ultrasound. The evaluation focused on report correctness, completeness, terminology complexity, and emotional impact. Seventy-nine radiologists from four major Saudi Arabian hospitals assessed AI-simplified versions of clinical radiology reports. Each participant reviewed one report from each modality and completed a structured questionnaire covering factual correctness, completeness, terminology complexity, and emotional impact. A structured and detailed prompt was used to guide ChatGPT-4 in generating the reports, which included clear findings, a lay summary, glossary, and clarification of ambiguous elements. Statistical analyses included descriptive summaries, Friedman tests, and Pearson correlations. Radiologists rated mammogram reports highest for correctness (M = 4.22), followed by CT (4.05) and MRI (3.95). Completeness scores followed a similar trend. Statistically significant differences were found in correctness (χ<sup>2</sup>(2) = 17.37, p < 0.001) and completeness (χ<sup>2</sup>(2) = 13.13, p = 0.001). Anxiety and complexity ratings were moderate, with MRI reports linked to slightly higher concern. A weak positive correlation emerged between radiologists' experience and mammogram correctness ratings (r = .235, p = .037). Radiologists expressed overall support for AI-generated simplified radiology reports when created using a structured prompt that includes summaries, glossaries, and clarification of ambiguous findings. While mammography and CT reports were rated favorably, MRI reports showed higher emotional impact, highlighting a need for clearer and more emotionally supportive language.

Economic Evaluations and Equity in the Use of Artificial Intelligence in Imaging Examinations for Medical Diagnosis in People With Dermatological, Neurological, and Pulmonary Diseases: Systematic Review.

Santana GO, Couto RM, Loureiro RM, Furriel BCRS, de Paula LGN, Rother ET, de Paiva JPQ, Correia LR

pubmed logopapersAug 13 2025
Health care systems around the world face numerous challenges. Recent advances in artificial intelligence (AI) have offered promising solutions, particularly in diagnostic imaging. This systematic review focused on evaluating the economic feasibility of AI in real-world diagnostic imaging scenarios, specifically for dermatological, neurological, and pulmonary diseases. The central question was whether the use of AI in these diagnostic assessments improves economic outcomes and promotes equity in health care systems. This systematic review has 2 main components, economic evaluation and equity assessment. We used the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) tool to ensure adherence to best practices in systematic reviews. The protocol was registered with PROSPERO (International Prospective Register of Systematic Reviews), and we followed the PRISMA-E (Preferred Reporting Items for Systematic Reviews and Meta-Analyses - Equity Extension) guidelines for equity. Scientific articles reporting on economic evaluations or equity considerations related to the use of AI-based tools in diagnostic imaging in dermatology, neurology, or pulmonology were included in the study. The search was conducted in the PubMed, Embase, Scopus, and Web of Science databases. Methodological quality was assessed using the following checklists, CHEC (Consensus on Health Economic Criteria) for economic evaluations, EPHPP (Effective Public Health Practice Project) for equity evaluation studies, and Welte for transferability. The systematic review identified 9 publications within the scope of the research question, with sample sizes ranging from 122 to over 1.3 million participants. The majority of studies addressed economic evaluation (88.9%), with most studies addressing pulmonary diseases (n=6; 66.6%), followed by neurological diseases (n=2; 22.3%), and only 1 (11.1%) study addressing dermatological diseases. These studies had an average quality access of 87.5% on the CHEC checklist. Only 2 studies were found to be transferable to Brazil and other countries with a similar health context. The economic evaluation revealed that 87.5% of studies highlighted the benefits of using AI in dermatology, neurology, and pulmonology, highlighting significant cost-effectiveness outcomes, with the most advantageous being a negative cost-effectiveness ratio of -US $27,580 per QALY (quality-adjusted life year) for melanoma diagnosis, indicating substantial cost savings in this scenario. The only study assessing equity, based on 129,819 radiographic images, identified AI-assisted underdiagnosis, particularly in certain subgroups defined by gender, ethnicity, and socioeconomic status. This review underscores the importance of transparency in the description of AI tools and the representativeness of population subgroups to mitigate health disparities. As AI is rapidly being integrated into health care, detailed assessments are essential to ensure that benefits reach all patients, regardless of sociodemographic factors.

Automated Segmentation of Coronal Brain Tissue Slabs for 3D Neuropathology

Jonathan Williams Ramirez, Dina Zemlyanker, Lucas Deden-Binder, Rogeny Herisse, Erendira Garcia Pallares, Karthik Gopinath, Harshvardhan Gazula, Christopher Mount, Liana N. Kozanno, Michael S. Marshall, Theresa R. Connors, Matthew P. Frosch, Mark Montine, Derek H. Oakley, Christine L. Mac Donald, C. Dirk Keene, Bradley T. Hyman, Juan Eugenio Iglesias

arxiv logopreprintAug 13 2025
Advances in image registration and machine learning have recently enabled volumetric analysis of \emph{postmortem} brain tissue from conventional photographs of coronal slabs, which are routinely collected in brain banks and neuropathology laboratories worldwide. One caveat of this methodology is the requirement of segmentation of the tissue from photographs, which currently requires costly manual intervention. In this article, we present a deep learning model to automate this process. The automatic segmentation tool relies on a U-Net architecture that was trained with a combination of \textit{(i)}1,414 manually segmented images of both fixed and fresh tissue, from specimens with varying diagnoses, photographed at two different sites; and \textit{(ii)}~2,000 synthetic images with randomized contrast and corresponding masks generated from MRI scans for improved generalizability to unseen photographic setups. Automated model predictions on a subset of photographs not seen in training were analyzed to estimate performance compared to manual labels -- including both inter- and intra-rater variability. Our model achieved a median Dice score over 0.98, mean surface distance under 0.4~mm, and 95\% Hausdorff distance under 1.60~mm, which approaches inter-/intra-rater levels. Our tool is publicly available at surfer.nmr.mgh.harvard.edu/fswiki/PhotoTools.

Quest for a clinically relevant medical image segmentation metric: the definition and implementation of Medical Similarity Index

Szuzina Fazekas, Bettina Katalin Budai, Viktor Bérczi, Pál Maurovich-Horvat, Zsolt Vizi

arxiv logopreprintAug 13 2025
Background: In the field of radiology and radiotherapy, accurate delineation of tissues and organs plays a crucial role in both diagnostics and therapeutics. While the gold standard remains expert-driven manual segmentation, many automatic segmentation methods are emerging. The evaluation of these methods primarily relies on traditional metrics that only incorporate geometrical properties and fail to adapt to various applications. Aims: This study aims to develop and implement a clinically relevant segmentation metric that can be adapted for use in various medical imaging applications. Methods: Bidirectional local distance was defined, and the points of the test contour were paired with points of the reference contour. After correcting for the distance between the test and reference center of mass, Euclidean distance was calculated between the paired points, and a score was given to each test point. The overall medical similarity index was calculated as the average score across all the test points. For demonstration, we used myoma and prostate datasets; nnUNet neural networks were trained for segmentation. Results: An easy-to-use, sustainable image processing pipeline was created using Python. The code is available in a public GitHub repository along with Google Colaboratory notebooks. The algorithm can handle multislice images with multiple masks per slice. Mask splitting algorithm is also provided that can separate the concave masks. We demonstrate the adaptability with prostate segmentation evaluation. Conclusions: A novel segmentation evaluation metric was implemented, and an open-access image processing pipeline was also provided, which can be easily used for automatic measurement of clinical relevance of medical image segmentation.}
Page 29 of 99986 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.