Sort by:
Page 286 of 6596585 results

Thornblad TAE, Ewals LJS, Nederend J, Luyer MDP, De With PHN, van der Sommen F

pubmed logopapersAug 8 2025
The success of deep learning and computer vision of natural images has led to an increased interest in medical image deep learning applications. However, introducing black-box deep learning models leaves little room for domain-specific knowledge when making the final diagnosis. For medical computer vision applications, not only accuracy, but also robustness, interpretability and explainability are essential to ensure trust for clinicians. Medical deep learning applications can therefore benefit from insights into the application at hand by involving clinical staff and considering the clinical diagnostic process. In this review, different clinically-inspired methods are surveyed, including clinical insights used at different stages of deep learning design for three-dimensional (3D) computed tomography (CT) image data. This review is conducted by investigating 400 research articles, covering different deep learning-based approaches for diagnosis of different diseases, in terms of including clinical insights in the published work. Based on this, a further detailed review is conducted of the 47 scientific articles using clinical inspiration. The clinically-inspired methods were found to be made with respect to preparation for training, 3D medical image data processing, integration of clinical data and model architecture selection and development. This highlights different ways in which domain-specific knowledge can be used in the design of deep learning systems.

Mendez-Avila C, Torre S, Arce YV, Contreras PR, Rios J, Raza NO, Gonzalez H, Hernandez YC, Cabezas A, Lucero M, Ezquerra V, Malamateniou C, Solis-Barquero SM

pubmed logopapersAug 8 2025
Artificial intelligence (AI) has been growing in the field of medical imaging and clinical practice. It is essential to comprehend the perceptions, experiences, and expectations regarding AI implementation among medical radiation technologists (MRTs) working in radiology, nuclear medicine, and radiotherapy. Some global studies tend to inform about AI implementation, but there is almost no information from Central and South American professionals. This study aimed to understand the perceptions of the impact of AI on the MRTs, as well as the varying experiences and expectations these professionals have regarding its implementation. An online survey was conducted among Central and South American MRTs for the collection of qualitative data concerning the primary perceptions regarding the implementation of AI in radiology, nuclear medicine, and radiotherapy. The analysis considered descriptive statistics in closed-ended questions and dimension codification for open-ended responses. A total of 398 valid responses were obtained, and it was determined that 98.5 % (n = 392) of the respondents agreed with the implementation of AI in clinical practice. The primary contributions of AI that were identified were the optimization of processes, greater diagnostic accuracy, and the possibility of job expansion. On the other hand, concerns were raised regarding the delay in providing training opportunities and limited avenues for learning in this domain, the displacement of roles, and dehumanization in clinical practice. This sample of participants likely represents mostly professionals who have more AI knowledge than others. It is therefore important to interpret these results with caution. Our findings indicate strong professional confidence in AI's capacity to improve imaging quality while maintaining patient safety standards. However, user resistance may disturb implementation efforts. Our results highlight the dual need for (a) comprehensive professional training programs and (b) user education initiatives that demonstrate AI's clinical value in radiology. We therefore recommend a carefully structured, phased AI implementation approach, guided by evidence-based guidelines and validated training protocols from existing research. AI is already present in medical imaging, but its effective implementations depend on building acceptance and trust through education and training, enabling MRTs to use it safely for patient benefit.

Stanislas Ducotterd, Michael Unser

arxiv logopreprintAug 8 2025
We introduce the multivariate fields of experts, a new framework for the learning of image priors. Our model generalizes existing fields of experts methods by incorporating multivariate potential functions constructed via Moreau envelopes of the $\ell_\infty$-norm. We demonstrate the effectiveness of our proposal across a range of inverse problems that include image denoising, deblurring, compressed-sensing magnetic-resonance imaging, and computed tomography. The proposed approach outperforms comparable univariate models and achieves performance close to that of deep-learning-based regularizers while being significantly faster, requiring fewer parameters, and being trained on substantially fewer data. In addition, our model retains a relatively high level of interpretability due to its structured design.

Guido Manni, Clemente Lauretti, Loredana Zollo, Paolo Soda

arxiv logopreprintAug 8 2025
Deep learning has revolutionized medical imaging, but its effectiveness is severely limited by insufficient labeled training data. This paper introduces a novel GAN-based semi-supervised learning framework specifically designed for low labeled-data regimes, evaluated across settings with 5 to 50 labeled samples per class. Our approach integrates three specialized neural networks -- a generator for class-conditioned image translation, a discriminator for authenticity assessment and classification, and a dedicated classifier -- within a three-phase training framework. The method alternates between supervised training on limited labeled data and unsupervised learning that leverages abundant unlabeled images through image-to-image translation rather than generation from noise. We employ ensemble-based pseudo-labeling that combines confidence-weighted predictions from the discriminator and classifier with temporal consistency through exponential moving averaging, enabling reliable label estimation for unlabeled data. Comprehensive evaluation across eleven MedMNIST datasets demonstrates that our approach achieves statistically significant improvements over six state-of-the-art GAN-based semi-supervised methods, with particularly strong performance in the extreme 5-shot setting where the scarcity of labeled data is most challenging. The framework maintains its superiority across all evaluated settings (5, 10, 20, and 50 shots per class). Our approach offers a practical solution for medical imaging applications where annotation costs are prohibitive, enabling robust classification performance even with minimal labeled data. Code is available at https://github.com/GuidoManni/SPARSE.

Mobarak Abumohsen, Enrique Costa-Montenegro, Silvia García-Méndez, Amani Yousef Owda, Majdi Owda

arxiv logopreprintAug 8 2025
Lung cancer (LC) ranks among the most frequently diagnosed cancers and is one of the most common causes of death for men and women worldwide. Computed Tomography (CT) images are the most preferred diagnosis method because of their low cost and their faster processing times. Many researchers have proposed various ways of identifying lung cancer using CT images. However, such techniques suffer from significant false positives, leading to low accuracy. The fundamental reason results from employing a small and imbalanced dataset. This paper introduces an innovative approach for LC detection and classification from CT images based on the DenseNet201 model. Our approach comprises several advanced methods such as Focal Loss, data augmentation, and regularization to overcome the imbalanced data issue and overfitting challenge. The findings show the appropriateness of the proposal, attaining a promising performance of 98.95% accuracy.

Xiaoxiao Yang, Meiliang Liu, Yunfang Xu, Zijin Li, Zhengye Si, Xinyue Yang, Zhiwen Zhao

arxiv logopreprintAug 8 2025
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that severely impairs cognitive function and quality of life. Timely intervention in AD relies heavily on early and precise diagnosis, which remains challenging due to the complex and subtle structural changes in the brain. Most existing deep learning methods focus only on a single plane of structural magnetic resonance imaging (sMRI) and struggle to accurately capture the complex and nonlinear relationships among pathological regions of the brain, thus limiting their ability to precisely identify atrophic features. To overcome these limitations, we propose an innovative framework, MPF-KANSC, which integrates multi-plane fusion (MPF) for combining features from the coronal, sagittal, and axial planes, and a Kolmogorov-Arnold Network-guided spatial-channel attention mechanism (KANSC) to more effectively learn and represent sMRI atrophy features. Specifically, the proposed model enables parallel feature extraction from multiple anatomical planes, thus capturing more comprehensive structural information. The KANSC attention mechanism further leverages a more flexible and accurate nonlinear function approximation technique, facilitating precise identification and localization of disease-related abnormalities. Experiments on the ADNI dataset confirm that the proposed MPF-KANSC achieves superior performance in AD diagnosis. Moreover, our findings provide new evidence of right-lateralized asymmetry in subcortical structural changes during AD progression, highlighting the model's promising interpretability.

Ruida Cheng, Tejas Sudharshan Mathai, Pritam Mukherjee, Benjamin Hou, Qingqing Zhu, Zhiyong Lu, Matthew McAuliffe, Ronald M. Summers

arxiv logopreprintAug 8 2025
Segmentation of lesions on CT enables automatic measurement for clinical assessment of chronic diseases (e.g., lymphoma). Integrating large language models (LLMs) into the lesion segmentation workflow offers the potential to combine imaging features with descriptions of lesion characteristics from the radiology reports. In this study, we investigate the feasibility of integrating text into the Swin-UMamba architecture for the task of lesion segmentation. The publicly available ULS23 DeepLesion dataset was used along with short-form descriptions of the findings from the reports. On the test dataset, a high Dice Score of 82% and low Hausdorff distance of 6.58 (pixels) was obtained for lesion segmentation. The proposed Text-Swin-UMamba model outperformed prior approaches: 37% improvement over the LLM-driven LanGuideMedSeg model (p < 0.001),and surpassed the purely image-based xLSTM-UNet and nnUNet models by 1.74% and 0.22%, respectively. The dataset and code can be accessed at https://github.com/ruida/LLM-Swin-UMamba

Xin Ci Wong, Duygu Sarikaya, Kieran Zucker, Marc De Kamps, Nishant Ravikumar

arxiv logopreprintAug 8 2025
Magnetic resonance (MR) imaging, including cardiac MR, is prone to domain shift due to variations in imaging devices and acquisition protocols. This challenge limits the deployment of trained AI models in real-world scenarios, where performance degrades on unseen domains. Traditional solutions involve increasing the size of the dataset through ad-hoc image augmentation or additional online training/transfer learning, which have several limitations. Synthetic data offers a promising alternative, but anatomical/structural consistency constraints limit the effectiveness of generative models in creating image-label pairs. To address this, we propose a diffusion model (DM) trained on a source domain that generates synthetic cardiac MR images that resemble a given reference. The synthetic data maintains spatial and structural fidelity, ensuring similarity to the source domain and compatibility with the segmentation mask. We assess the utility of our generative approach in multi-centre cardiac MR segmentation, using the 2D nnU-Net, 3D nnU-Net and vanilla U-Net segmentation networks. We explore domain generalisation, where, domain-invariant segmentation models are trained on synthetic source domain data, and domain adaptation, where, we shift target domain data towards the source domain using the DM. Both strategies significantly improved segmentation performance on data from an unseen target domain, in terms of surface-based metrics (Welch's t-test, p < 0.01), compared to training segmentation models on real data alone. The proposed method ameliorates the need for transfer learning or online training to address domain shift challenges in cardiac MR image analysis, especially useful in data-scarce settings.

Byunghyun Ko, Anning Tian, Jeongkyu Lee

arxiv logopreprintAug 8 2025
Accurate segmentation of femur structures from Magnetic Resonance Imaging (MRI) is critical for orthopedic diagnosis and surgical planning but remains challenging due to the limitations of existing 2D and 3D deep learning-based segmentation approaches. In this study, we propose XAG-Net, a novel 2.5D U-Net-based architecture that incorporates pixel-wise cross-slice attention (CSA) and skip attention gating (AG) mechanisms to enhance inter-slice contextual modeling and intra-slice feature refinement. Unlike previous CSA-based models, XAG-Net applies pixel-wise softmax attention across adjacent slices at each spatial location for fine-grained inter-slice modeling. Extensive evaluations demonstrate that XAG-Net surpasses baseline 2D, 2.5D, and 3D U-Net models in femur segmentation accuracy while maintaining computational efficiency. Ablation studies further validate the critical role of the CSA and AG modules, establishing XAG-Net as a promising framework for efficient and accurate femur MRI segmentation.

Conor Rowan, Sumedh Soman, John A. Evans

arxiv logopreprintAug 8 2025
We present a novel approach to variational volume reconstruction from sparse, noisy slice data using the Deep Ritz method. Motivated by biomedical imaging applications such as MRI-based slice-to-volume reconstruction (SVR), our approach addresses three key challenges: (i) the reliance on image segmentation to extract boundaries from noisy grayscale slice images, (ii) the need to reconstruct volumes from a limited number of slice planes, and (iii) the computational expense of traditional mesh-based methods. We formulate a variational objective that combines a regression loss designed to avoid image segmentation by operating on noisy slice data directly with a modified Cahn-Hilliard energy incorporating anisotropic diffusion to regularize the reconstructed geometry. We discretize the phase field with a neural network, approximate the objective at each optimization step with Monte Carlo integration, and use ADAM to find the minimum of the approximated variational objective. While the stochastic integration may not yield the true solution to the variational problem, we demonstrate that our method reliably produces high-quality reconstructed volumes in a matter of seconds, even when the slice data is sparse and noisy.
Page 286 of 6596585 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.