Sort by:
Page 267 of 3023012 results

Recent advancements in personalized management of prostate cancer biochemical recurrence after radical prostatectomy.

Falkenbach F, Ekrutt J, Maurer T

pubmed logopapersMay 15 2025
Biochemical recurrence (BCR) after radical prostatectomy exhibits heterogeneous prognostic implications. Recent advancements in imaging and biomarkers have high potential for personalizing care. Prostate-specific membrane antigen imaging (PSMA)-PET/CT has revolutionized the BCR management in prostate cancer by detecting microscopic lesions earlier than conventional staging, leading to improved cancer control outcomes and changes in treatment plans in approximately two-thirds of cases. Salvage radiotherapy, often combined with androgen deprivation therapy, remains the standard treatment for high-risk BCR postprostatectomy, with PSMA-PET/CT guiding treatment adjustments, such as the radiation field, and improving progression-free survival. Advancements in biomarkers, genomic classifiers, and artificial intelligence-based models have enhanced risk stratification and personalized treatment planning, resulting in both treatment intensification and de-escalation. While conventional risk grouping relying on Gleason score and PSA level and kinetics remain the foundation for BCR management, PSMA-PET/CT, novel biomarkers, and artificial intelligence may enable more personalized treatment strategies.

Automated high precision PCOS detection through a segment anything model on super resolution ultrasound ovary images.

Reka S, Praba TS, Prasanna M, Reddy VNN, Amirtharajan R

pubmed logopapersMay 15 2025
PCOS (Poly-Cystic Ovary Syndrome) is a multifaceted disorder that often affects the ovarian morphology of women of their reproductive age, resulting in the development of numerous cysts on the ovaries. Ultrasound imaging typically diagnoses PCOS, which helps clinicians assess the size, shape, and existence of cysts in the ovaries. Nevertheless, manual ultrasound image analysis is often challenging and time-consuming, resulting in inter-observer variability. To effectively treat PCOS and prevent its long-term effects, prompt and accurate diagnosis is crucial. In such cases, a prediction model based on deep learning can help physicians by streamlining the diagnosis procedure, reducing time and potential errors. This article proposes a novel integrated approach, QEI-SAM (Quality Enhanced Image - Segment Anything Model), for enhancing image quality and ovarian cyst segmentation for accurate prediction. GAN (Generative Adversarial Networks) and CNN (Convolutional Neural Networks) are the most recent cutting-edge innovations that have supported the system in attaining the expected result. The proposed QEI-SAM model used Enhanced Super Resolution Generative Adversarial Networks (ESRGAN) for image enhancement to increase the resolution, sharpening the edges and restoring the finer structure of the ultrasound ovary images and achieved a better SSIM of 0.938, PSNR value of 38.60 and LPIPS value of 0.0859. Then, it incorporates the Segment Anything Model (SAM) to segment ovarian cysts and achieve the highest Dice coefficient of 0.9501 and IoU score of 0.9050. Furthermore, Convolutional Neural Network - ResNet 50, ResNet 101, VGG 16, VGG 19, AlexNet and Inception v3 have been implemented to diagnose PCOS promptly. Finally, VGG 19 has achieved the highest accuracy of 99.31%.

MRI-derived deep learning models for predicting 1p/19q codeletion status in glioma patients: a systematic review and meta-analysis of diagnostic test accuracy studies.

Ahmadzadeh AM, Broomand Lomer N, Ashoobi MA, Elyassirad D, Gheiji B, Vatanparast M, Rostami A, Abouei Mehrizi MA, Tabari A, Bathla G, Faghani S

pubmed logopapersMay 15 2025
We conducted a systematic review and meta-analysis to evaluate the performance of magnetic resonance imaging (MRI)-derived deep learning (DL) models in predicting 1p/19q codeletion status in glioma patients. The literature search was performed in four databases: PubMed, Web of Science, Embase, and Scopus. We included the studies that evaluated the performance of end-to-end DL models in predicting the status of glioma 1p/19q codeletion. The quality of the included studies was assessed by the Quality assessment of diagnostic accuracy studies-2 (QUADAS-2) METhodological RadiomICs Score (METRICS). We calculated diagnostic pooled estimates and heterogeneity was evaluated using I<sup>2</sup>. Subgroup analysis and sensitivity analysis were conducted to explore sources of heterogeneity. Publication bias was evaluated by Deeks' funnel plots. Twenty studies were included in the systematic review. Only two studies had a low quality. A meta-analysis of the ten studies demonstrated a pooled sensitivity of 0.77 (95% CI: 0.63-0.87), a specificity of 0.85 (95% CI: 0.74-0.92), a positive diagnostic likelihood ratio (DLR) of 5.34 (95% CI: 2.88-9.89), a negative DLR of 0.26 (95% CI: 0.16-0.45), a diagnostic odds ratio of 20.24 (95% CI: 8.19-50.02), and an area under the curve of 0.89 (95% CI: 0.86-0.91). The subgroup analysis identified a significant difference between groups depending on the segmentation method used. DL models can predict glioma 1p/19q codeletion status with high accuracy and may enhance non-invasive tumor characterization and aid in the selection of optimal therapeutic strategies.

A computed tomography-based radiomics prediction model for BRAF mutation status in colorectal cancer.

Zhou B, Tan H, Wang Y, Huang B, Wang Z, Zhang S, Zhu X, Wang Z, Zhou J, Cao Y

pubmed logopapersMay 15 2025
The aim of this study was to develop and validate CT venous phase image-based radiomics to predict BRAF gene mutation status in preoperative colorectal cancer patients. In this study, 301 patients with pathologically confirmed colorectal cancer were retrospectively enrolled, comprising 225 from Centre I (73 mutant and 152 wild-type) and 76 from Centre II (36 mutant and 40 wild-type). The Centre I cohort was randomly divided into a training set (n = 158) and an internal validation set (n = 67) in a 7:3 ratio, while Centre II served as an independent external validation set (n = 76). The whole tumor region of interest was segmented, and radiomics characteristics were extracted. To explore whether tumor expansion could improve the performance of the study objectives, the tumor contour was extended by 3 mm in this study. Finally, a t-test, Pearson correlation, and LASSO regression were used to screen out features strongly associated with BRAF mutations. Based on these features, six classifiers-Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), Logistic Regression (LR), K-Nearest Neighbors (KNN), and Extreme Gradient Boosting (XGBoost)-were constructed. The model performance and clinical utility were evaluated using receiver operating characteristic (ROC) curves, decision curve analysis, accuracy, sensitivity, and specificity. Gender was an independent predictor of BRAF mutations. The unexpanded RF model, constructed using 11 imaging histologic features, demonstrated the best predictive performance. For the training cohort, it achieved an AUC of 0.814 (95% CI 0.732-0.895), an accuracy of 0.810, and a sensitivity of 0.620. For the internal validation cohort, it achieved an AUC of 0.798 (95% CI 0.690-0.907), an accuracy of 0.761, and a sensitivity of 0.609. For the external validation cohort, it achieved an AUC of 0.737 (95% CI 0.616-0.847), an accuracy of 0.658, and a sensitivity of 0.667. A machine learning model based on CT radiomics can effectively predict BRAF mutations in patients with colorectal cancer. The unexpanded RF model demonstrated optimal predictive performance.

Deep learning MRI-based radiomic models for predicting recurrence in locally advanced nasopharyngeal carcinoma after neoadjuvant chemoradiotherapy: a multi-center study.

Hu C, Xu C, Chen J, Huang Y, Meng Q, Lin Z, Huang X, Chen L

pubmed logopapersMay 15 2025
Local recurrence and distant metastasis were a common manifestation of locoregionally advanced nasopharyngeal carcinoma (LA-NPC) after neoadjuvant chemoradiotherapy (NACT). To validate the clinical value of MRI radiomic models based on deep learning for predicting the recurrence of LA-NPC patients. A total of 328 NPC patients from four hospitals were retrospectively included and divided into the training(n = 229) and validation (n = 99) cohorts randomly. Extracting 975 traditional radiomic features and 1000 deep radiomic features from contrast enhanced T1-weighted (T1WI + C) and T2-weighted (T2WI) sequences, respectively. Least absolute shrinkage and selection operator (LASSO) was applied for feature selection. Five machine learning classifiers were conducted to develop three models for LA-NPC prediction in training cohort, namely Model I: traditional radiomic features, Model II: combined the deep radiomic features with Model I, and Model III: combined Model II with clinical features. The predictive performance of these models were evaluated by receive operating characteristic (ROC) curve analysis, area under the curve (AUC), accuracy, sensitivity and specificity in both cohorts. The clinical characteristics in two cohorts showed no significant differences. Choosing 15 radiomic features and 6 deep radiomic features from T1WI + C. Choosing 9 radiomic features and 6 deep radiomic features from T2WI. In T2WI, the Model II based on Random forest (RF) (AUC = 0.87) performed best compared with other models in validation cohort. Traditional radiomic model combined with deep radiomic features shows excellent predictive performance. It could be used assist clinical doctors to predict curative effect for LA-NPC patients after NACT.

On the Interplay of Human-AI Alignment,Fairness, and Performance Trade-offs in Medical Imaging

Haozhe Luo, Ziyu Zhou, Zixin Shu, Aurélie Pahud de Mortanges, Robert Berke, Mauricio Reyes

arxiv logopreprintMay 15 2025
Deep neural networks excel in medical imaging but remain prone to biases, leading to fairness gaps across demographic groups. We provide the first systematic exploration of Human-AI alignment and fairness in this domain. Our results show that incorporating human insights consistently reduces fairness gaps and enhances out-of-domain generalization, though excessive alignment can introduce performance trade-offs, emphasizing the need for calibrated strategies. These findings highlight Human-AI alignment as a promising approach for developing fair, robust, and generalizable medical AI systems, striking a balance between expert guidance and automated efficiency. Our code is available at https://github.com/Roypic/Aligner.

Accuracy and Reliability of Multimodal Imaging in Diagnosing Knee Sports Injuries.

Zhu D, Zhang Z, Li W

pubmed logopapersMay 15 2025
Due to differences in subjective experience and professional level among doctors, as well as inconsistent diagnostic criteria, there are issues with the accuracy and reliability of single imaging diagnosis results for knee joint injuries. To address these issues, magnetic resonance imaging (MRI), computed tomography (CT) and ultrasound (US) are adopted in this article for ensemble learning, and deep learning (DL) is combined for automatic analysis. By steps such as image enhancement, noise elimination, and tissue segmentation, the quality of image data is improved, and then convolutional neural networks (CNN) are used to automatically identify and classify injury types. The experimental results show that the DL model exhibits high sensitivity and specificity in the diagnosis of different types of injuries, such as anterior cruciate ligament tear, meniscus injury, cartilage injury, and fracture. The diagnostic accuracy of anterior cruciate ligament tear exceeds 90%, and the highest diagnostic accuracy of cartilage injury reaches 95.80%. In addition, compared with traditional manual image interpretation, the DL model has significant advantages in time efficiency, with a significant reduction in average interpretation time per case. The diagnostic consistency experiment shows that the DL model has high consistency with doctors' diagnosis results, with an overall error rate of less than 2%. The model has high accuracy and strong generalization ability when dealing with different types of joint injuries. These data indicate that combining multiple imaging technologies and the DL algorithm can effectively improve the accuracy and efficiency of diagnosing sports injuries of knee joints.

Segmentation of the thoracolumbar fascia in ultrasound imaging: a deep learning approach.

Bonaldi L, Pirri C, Giordani F, Fontanella CG, Stecco C, Uccheddu F

pubmed logopapersMay 15 2025
Only in recent years it has been demonstrated that the thoracolumbar fascia is involved in low back pain (LBP), thus highlighting its implications for treatments. Furthermore, an easily accessible and non-invasive way to investigate the fascia in real time is the ultrasound examination, which to be reliable as is, it must overcome the challenges related to the configuration of the machine and the experience of the operator. Therefore, the lack of a clear understanding of the fascial system combined with the penalty related to the setting of the ultrasound acquisition has generated a gap that makes its effective evaluation difficult during clinical routine. The aim of the present work is to fill this gap by investigating the effectiveness of using a deep learning approach to segment the thoracolumbar fascia from ultrasound imaging. A total of 538 ultrasound images of the thoracolumbar fascia of LBP subjects were finally used to train and test a deep learning network. An additional test set (so-called Test set 2) was collected from another center, operator, machine manufacturer, patient cohort, and protocol to improve the generalizability of the study. A U-Net-based architecture was demonstrated to be able to segment these structures with a final training accuracy of 0.99 and a validation accuracy of 0.91. The accuracy of the prediction computed on a test set (87 images not included in the training set) reached the 0.94, with a mean intersection over union index of 0.82 and a Dice-score of 0.76. These latter metrics were outperformed by those in Test set 2. The validity of the predictions was also verified and confirmed by two expert clinicians. Automatic identification of the thoracolumbar fascia has shown promising results to thoroughly investigate its alteration and target a personalized rehabilitation intervention based on each patient-specific scenario.

"MR Fingerprinting for Imaging Brain Hemodynamics and Oxygenation".

Coudert T, Delphin A, Barrier A, Barbier EL, Lemasson B, Warnking JM, Christen T

pubmed logopapersMay 15 2025
Over the past decade, several studies have explored the potential of magnetic resonance fingerprinting (MRF) for the quantification of brain hemodynamics, oxygenation, and perfusion. Recent advances in simulation models and reconstruction frameworks have also significantly enhanced the accuracy of vascular parameter estimation. This review provides an overview of key vascular MRF studies, emphasizing advancements in geometrical models for vascular simulations, novel sequences, and state-of-the-art reconstruction techniques incorporating machine learning and deep learning algorithms. Both pre-clinical and clinical applications are discussed. Based on these findings, we outline future directions and development areas that need to be addressed to facilitate their clinical translation. EVIDENCE LEVEL: N/A. TECHNICAL EFFICACY: Stage 1.

From error to prevention of wrong-level spine surgery: a review.

Javadnia P, Gohari H, Salimi N, Alimohammadi E

pubmed logopapersMay 15 2025
Wrong-level spine surgery remains a significant concern in spine surgery, leading to devastating consequences for patients and healthcare systems alike. This comprehensive review aims to analyze the existing literature on wrong-level spine surgery in spine procedures, identifying key factors that contribute to these errors and exploring advanced strategies and technologies designed to prevent them. A systematic literature search was conducted across multiple databases, including PubMed, Scopus, EMBASE, and CINAHL. The selection criteria focused on preclinical and clinical studies that specifically addressed wrong site and wrong level surgeries in the context of spine surgery. The findings reveal a range of contributing factors to wrong-level spine surgeries, including communication failures, inadequate preoperative planning, and insufficient surgical protocols. The review emphasizes the critical role of innovative technologies-such as artificial intelligence, advanced imaging techniques, and surgical navigation systems-alongside established safety protocols like digital checklists and simulation training in enhancing surgical accuracy and preventing errors. In conclusion, integrating advanced technologies and systematic safety protocols is instrumental in reducing the incidence of wrong-level spine surgeries. This review underscores the importance of continuous education and the adoption of innovative solutions to foster a culture of safety and improve surgical outcomes. By addressing the multifaceted challenges associated with these errors, the field can work towards minimizing their occurrence and enhancing patient care.
Page 267 of 3023012 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.