Sort by:
Page 265 of 6596585 results

Sadeghi-Adl Z, Naghizadehkashani S, Middleton D, Krisa L, Alizadeh M, Flanders AE, Faro SH, Wang Z, Mohamed FB

pubmed logopapersAug 14 2025
Spinal cord injury (SCI) in the pediatric population presents a unique challenge in diagnosis and prognosis due to the complexity of performing clinical assessments on children. Accurate evaluation of structural changes in the spinal cord is essential for effective treatment planning. This study aims to evaluate structural characteristics in pediatric patients with SCI by comparing cross-sectional area (CSA), anterior-posterior (AP) width, and right-left (RL) width across all vertebral levels of the spinal cord between typically developing (TD) and participants with SCI. We employed deep learning techniques to utilize these measures for detecting SCI cases and determining their injury severity. Sixty-one pediatric participants (ages 6-18), including 20 with chronic SCI and 41 TD, were enrolled and scanned by using a 3T MRI scanner. All SCI participants underwent the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) test to assess their neurologic function and determine their American Spinal Injury Association (ASIA) Impairment Scale (AIS) category. T2-weighted MRI scans were utilized to measure CSA, AP width, and RL widths along the entire cervical and thoracic cord. These measures were automatically extracted at every vertebral level of the spinal cord by using the spinal cord toolbox. Deep convolutional neural networks (CNNs) were utilized to classify participants into SCI or TD groups and determine their AIS classification based on structural parameters and demographic factors such as age and height. Significant differences (<i>P</i> < .05) were found in CSA, AP width, and RL width between SCI and TD participants, indicating notable structural alterations due to SCI. The CNN-based models demonstrated high performance, achieving 96.59% accuracy in distinguishing SCI from TD participants. Furthermore, the models determined AIS category classification with 94.92% accuracy. The study demonstrates the effectiveness of integrating cross-sectional structural imaging measures with deep learning methods for classification and severity assessment of pediatric SCI. The deep learning approach outperforms traditional machine learning models in diagnostic accuracy, offering potential improvements in patient care in pediatric SCI management.

Sushant Gautam, Vajira Thambawita, Michael Riegler, Pål Halvorsen, Steven Hicks

arxiv logopreprintAug 14 2025
The Medico 2025 challenge addresses Visual Question Answering (VQA) for Gastrointestinal (GI) imaging, organized as part of the MediaEval task series. The challenge focuses on developing Explainable Artificial Intelligence (XAI) models that answer clinically relevant questions based on GI endoscopy images while providing interpretable justifications aligned with medical reasoning. It introduces two subtasks: (1) answering diverse types of visual questions using the Kvasir-VQA-x1 dataset, and (2) generating multimodal explanations to support clinical decision-making. The Kvasir-VQA-x1 dataset, created from 6,500 images and 159,549 complex question-answer (QA) pairs, serves as the benchmark for the challenge. By combining quantitative performance metrics and expert-reviewed explainability assessments, this task aims to advance trustworthy Artificial Intelligence (AI) in medical image analysis. Instructions, data access, and an updated guide for participation are available in the official competition repository: https://github.com/simula/MediaEval-Medico-2025

Jacob Egebjerg, Daniel Wüstner

arxiv logopreprintAug 14 2025
Soft X-ray tomography (SXT) provides detailed structural insight into whole cells but is hindered by experimental artifacts such as the missing wedge and by limited availability of annotated datasets. We present \method, a simulation pipeline that generates realistic cellular phantoms and applies synthetic artifacts to produce paired noisy volumes, sinograms, and reconstructions. We validate our approach by training a neural network primarily on synthetic data and demonstrate effective few-shot and zero-shot transfer learning on real SXT tomograms. Our model delivers accurate segmentations, enabling quantitative analysis of noisy tomograms without relying on large labeled datasets or complex reconstruction methods.

Lennard Kaster, Maximilian E. Lochschmidt, Anne M. Bauer, Tina Dorosti, Sofia Demianova, Thomas Koehler, Daniela Pfeiffer, Franz Pfeiffer

arxiv logopreprintAug 14 2025
Dark-field radiography is a novel X-ray imaging modality that enables complementary diagnostic information by visualizing the microstructural properties of lung tissue. Implemented via a Talbot-Lau interferometer integrated into a conventional X-ray system, it allows simultaneous acquisition of perfectly temporally and spatially registered attenuation-based conventional and dark-field radiographs. Recent clinical studies have demonstrated that dark-field radiography outperforms conventional radiography in diagnosing and staging pulmonary diseases. However, the polychromatic nature of medical X-ray sources leads to beam-hardening, which introduces structured artifacts in the dark-field radiographs, particularly from osseous structures. This so-called beam-hardening-induced dark-field signal is an artificial dark-field signal and causes undesired cross-talk between attenuation and dark-field channels. This work presents a segmentation-based beam-hardening correction method using deep learning to segment ribs and clavicles. Attenuation contribution masks derived from dual-layer detector computed tomography data, decomposed into aluminum and water, were used to refine the material distribution estimation. The method was evaluated both qualitatively and quantitatively on clinical data from healthy subjects and patients with chronic obstructive pulmonary disease and COVID-19. The proposed approach reduces bone-induced artifacts and improves the homogeneity of the lung dark-field signal, supporting more reliable visual and quantitative assessment in clinical dark-field chest radiography.

Furkan Pala, Islem Rekik

arxiv logopreprintAug 14 2025
Deep learning models often struggle to maintain generalizability in medical imaging, particularly under domain-fracture scenarios where distribution shifts arise from varying imaging techniques, acquisition protocols, patient populations, demographics, and equipment. In practice, each hospital may need to train distinct models - differing in learning task, width, and depth - to match local data. For example, one hospital may use Euclidean architectures such as MLPs and CNNs for tabular or grid-like image data, while another may require non-Euclidean architectures such as graph neural networks (GNNs) for irregular data like brain connectomes. How to train such heterogeneous models coherently across datasets, while enhancing each model's generalizability, remains an open problem. We propose unified learning, a new paradigm that encodes each model into a graph representation, enabling unification in a shared graph learning space. A GNN then guides optimization of these unified models. By decoupling parameters of individual models and controlling them through a unified GNN (uGNN), our method supports parameter sharing and knowledge transfer across varying architectures (MLPs, CNNs, GNNs) and distributions, improving generalizability. Evaluations on MorphoMNIST and two MedMNIST benchmarks - PneumoniaMNIST and BreastMNIST - show that unified learning boosts performance when models are trained on unique distributions and tested on mixed ones, demonstrating strong robustness to unseen data with large distribution shifts. Code and benchmarks: https://github.com/basiralab/uGNN

Farid Tasharofi, Fuxin Fan, Melika Qahqaie, Mareike Thies, Andreas Maier

arxiv logopreprintAug 14 2025
Metal artifacts, caused by high-density metallic implants in computed tomography (CT) imaging, severely degrade image quality, complicating diagnosis and treatment planning. While existing deep learning algorithms have achieved notable success in Metal Artifact Reduction (MAR), they often struggle to suppress artifacts while preserving structural details. To address this challenge, we propose FIND-Net (Fourier-Integrated Network with Dictionary Kernels), a novel MAR framework that integrates frequency and spatial domain processing to achieve superior artifact suppression and structural preservation. FIND-Net incorporates Fast Fourier Convolution (FFC) layers and trainable Gaussian filtering, treating MAR as a hybrid task operating in both spatial and frequency domains. This approach enhances global contextual understanding and frequency selectivity, effectively reducing artifacts while maintaining anatomical structures. Experiments on synthetic datasets show that FIND-Net achieves statistically significant improvements over state-of-the-art MAR methods, with a 3.07% MAE reduction, 0.18% SSIM increase, and 0.90% PSNR improvement, confirming robustness across varying artifact complexities. Furthermore, evaluations on real-world clinical CT scans confirm FIND-Net's ability to minimize modifications to clean anatomical regions while effectively suppressing metal-induced distortions. These findings highlight FIND-Net's potential for advancing MAR performance, offering superior structural preservation and improved clinical applicability. Code is available at https://github.com/Farid-Tasharofi/FIND-Net

Bella Specktor-Fadida, Malte Hoffmann

arxiv logopreprintAug 14 2025
Deep learning segmentation relies heavily on labeled data, but manual labeling is laborious and time-consuming, especially for volumetric images such as brain magnetic resonance imaging (MRI). While recent domain-randomization techniques alleviate the dependency on labeled data by synthesizing diverse training images from label maps, they offer limited anatomical variability when very few label maps are available. Semi-supervised self-training addresses label scarcity by iteratively incorporating model predictions into the training set, enabling networks to learn from unlabeled data. In this work, we combine domain randomization with self-training to train three-dimensional skull-stripping networks using as little as a single labeled example. First, we automatically bin voxel intensities, yielding labels we use to synthesize images for training an initial skull-stripping model. Second, we train a convolutional autoencoder (AE) on the labeled example and use its reconstruction error to assess the quality of brain masks predicted for unlabeled data. Third, we select the top-ranking pseudo-labels to fine-tune the network, achieving skull-stripping performance on out-of-distribution data that approaches models trained with more labeled images. We compare AE-based ranking to consistency-based ranking under test-time augmentation, finding that the AE approach yields a stronger correlation with segmentation accuracy. Our results highlight the potential of combining domain randomization and AE-based quality control to enable effective semi-supervised segmentation from extremely limited labeled data. This strategy may ease the labeling burden that slows progress in studies involving new anatomical structures or emerging imaging techniques.

Jixiang Chen, Yiqun Lin, Yi Qin, Hualiang Wang, Xiaomeng Li

arxiv logopreprintAug 14 2025
Sparse-view computed tomography (CT) reduces radiation exposure by subsampling projection views, but conventional reconstruction methods produce severe streak artifacts with undersampled data. While deep-learning-based methods enable single-step artifact suppression, they often produce over-smoothed results under significant sparsity. Though diffusion models improve reconstruction via iterative refinement and generative priors, they require hundreds of sampling steps and struggle with stability in highly sparse regimes. To tackle these concerns, we present the Cross-view Generalized Diffusion Model (CvG-Diff), which reformulates sparse-view CT reconstruction as a generalized diffusion process. Unlike existing diffusion approaches that rely on stochastic Gaussian degradation, CvG-Diff explicitly models image-domain artifacts caused by angular subsampling as a deterministic degradation operator, leveraging correlations across sparse-view CT at different sample rates. To address the inherent artifact propagation and inefficiency of sequential sampling in generalized diffusion model, we introduce two innovations: Error-Propagating Composite Training (EPCT), which facilitates identifying error-prone regions and suppresses propagated artifacts, and Semantic-Prioritized Dual-Phase Sampling (SPDPS), an adaptive strategy that prioritizes semantic correctness before detail refinement. Together, these innovations enable CvG-Diff to achieve high-quality reconstructions with minimal iterations, achieving 38.34 dB PSNR and 0.9518 SSIM for 18-view CT using only \textbf{10} steps on AAPM-LDCT dataset. Extensive experiments demonstrate the superiority of CvG-Diff over state-of-the-art sparse-view CT reconstruction methods. The code is available at https://github.com/xmed-lab/CvG-Diff.

Soorena Salari, Catherine Spino, Laurie-Anne Pharand, Fabienne Lathuiliere, Hassan Rivaz, Silvain Beriault, Yiming Xiao

arxiv logopreprintAug 14 2025
Accurate tissue motion tracking is critical to ensure treatment outcome and safety in 2D-Cine MRI-guided radiotherapy. This is typically achieved by registration of sequential images, but existing methods often face challenges with large misalignments and lack of interpretability. In this paper, we introduce DINOMotion, a novel deep learning framework based on DINOv2 with Low-Rank Adaptation (LoRA) layers for robust, efficient, and interpretable motion tracking. DINOMotion automatically detects corresponding landmarks to derive optimal image registration, enhancing interpretability by providing explicit visual correspondences between sequential images. The integration of LoRA layers reduces trainable parameters, improving training efficiency, while DINOv2's powerful feature representations offer robustness against large misalignments. Unlike iterative optimization-based methods, DINOMotion directly computes image registration at test time. Our experiments on volunteer and patient datasets demonstrate its effectiveness in estimating both linear and nonlinear transformations, achieving Dice scores of 92.07% for the kidney, 90.90% for the liver, and 95.23% for the lung, with corresponding Hausdorff distances of 5.47 mm, 8.31 mm, and 6.72 mm, respectively. DINOMotion processes each scan in approximately 30ms and consistently outperforms state-of-the-art methods, particularly in handling large misalignments. These results highlight its potential as a robust and interpretable solution for real-time motion tracking in 2D-Cine MRI-guided radiotherapy.

Xie P, Liao ZJ, Xie L, Zhong J, Zhang X, Yuan W, Yin Y, Chen T, Lv H, Wen X, Wang X, Zhang L

pubmed logopapersAug 14 2025
This study develops a machine learning model using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) radiomics and clinical data to preoperatively differentiate hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC), and hepatic inflammatory pseudotumor (HIPT), addressing limitations of conventional diagnostics. This retrospective study included 280 patients (HCC = 160, ICC = 80, HIPT = 40) who underwent DCE-MRI from 2008 to 2024 at three hospitals. Radiomics features and clinical data were extracted and analyzed using LASSO regression and machine learning algorithms (Logistic Regression, Random Forest, and Extreme Gradient Boosting), with class weighting (HCC:ICC:HIPT = 1:2:4) to address class imbalance. Models were compared using macro-average Area Under the Curve (AUC), accuracy, recall, and precision. The fusion model, integrating radiomics and clinical features, achieved an AUC of 0.933 (95% CI: 0.91-0.95) and 84.5% accuracy, outperforming radiomics-only (AUC = 0.856, 72.6%) and clinical-only (AUC = 0.795, 66.7%) models (p < 0.05). Rim enhancement is a key model feature for distinguishing HCC from ICC and HIPT, while hepatic lobe atrophy distinguishes ICC and HIPT from HCC. This study developed a novel preoperative imaging-based model to differentiate HCC, ICC, and HIPT. The fusion model performed exceptionally well, demonstrating superior accuracy in ICC identification, significantly outperforming traditional diagnostic methods (e.g., radiology and biomarkers) and single-modality machine learning models (p < 0.05). This noninvasive approach enhances diagnostic precision and supports personalized treatment planning in liver disease management. This study develops a novel preoperative imaging-based machine learning model to differentiate hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC), and hepatic inflammatory pseudotumor (HIPT), improving diagnostic accuracy and advancing personalized treatment strategies in clinical radiology. A machine learning model integrates DCE-MRI radiomics and clinical data for liver lesion differentiation. The fusion model outperforms single-modality models with 0.933 AUC and 84.5% accuracy. This model provides a noninvasive, reliable tool for personalized liver disease diagnosis and treatment planning.
Page 265 of 6596585 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.