Sort by:
Page 190 of 3593587 results

A novel UNet-SegNet and vision transformer architectures for efficient segmentation and classification in medical imaging.

Tongbram S, Shimray BA, Singh LS

pubmed logopapersJul 8 2025
Medical imaging has become an essential tool in the diagnosis and treatment of various diseases, and provides critical insights through ultrasound, MRI, and X-ray modalities. Despite its importance, challenges remain in the accurate segmentation and classification of complex structures owing to factors such as low contrast, noise, and irregular anatomical shapes. This study addresses these challenges by proposing a novel hybrid deep learning model that integrates the strengths of Convolutional Autoencoders (CAE), UNet, and SegNet architectures. In the preprocessing phase, a Convolutional Autoencoder is used to effectively reduce noise while preserving essential image details, ensuring that the images used for segmentation and classification are of high quality. The ability of CAE to denoise images while retaining critical features enhances the accuracy of the subsequent analysis. The developed model employs UNet for multiscale feature extraction and SegNet for precise boundary reconstruction, with Dynamic Feature Fusion integrated at each skip connection to dynamically weight and combine the feature maps from the encoder and decoder. This ensures that both global and local features are effectively captured, while emphasizing the critical regions for segmentation. To further enhance the model's performance, the Hybrid Emperor Penguin Optimizer (HEPO) was employed for feature selection, while the Hybrid Vision Transformer with Convolutional Embedding (HyViT-CE) was used for the classification task. This hybrid approach allows the model to maintain high accuracy across different medical imaging tasks. The model was evaluated using three major datasets: brain tumor MRI, breast ultrasound, and chest X-rays. The results demonstrate exceptional performance, achieving an accuracy of 99.92% for brain tumor segmentation, 99.67% for breast cancer detection, and 99.93% for chest X-ray classification. These outcomes highlight the ability of the model to deliver reliable and accurate diagnostics across various medical contexts, underscoring its potential as a valuable tool in clinical settings. The findings of this study will contribute to advancing deep learning applications in medical imaging, addressing existing research gaps, and offering a robust solution for improved patient care.

AI lesion tracking in PET/CT imaging: a proposal for a Siamese-based CNN pipeline applied to PSMA PET/CT scans.

Hein SP, Schultheiss M, Gafita A, Zaum R, Yagubbayli F, Tauber R, Rauscher I, Eiber M, Pfeiffer F, Weber WA

pubmed logopapersJul 8 2025
Assessing tumor response to systemic therapies is one of the main applications of PET/CT. Routinely, only a small subset of index lesions out of multiple lesions is analyzed. However, this operator dependent selection may bias the results due to possible significant inter-metastatic heterogeneity of response to therapy. Automated, AI-based approaches for lesion tracking hold promise in enabling the analysis of many more lesions and thus providing a better assessment of tumor response. This work introduces a Siamese CNN approach for lesion tracking between PET/CT scans. Our approach is applied on the laborious task of tracking a high number of bone lesions in full-body baseline and follow-up [<sup>68</sup>Ga]Ga- or [<sup>18</sup>F]F-PSMA PET/CT scans after two cycles of [<sup>177</sup>Lu]Lu-PSMA therapy of metastatic castration resistant prostate cancer patients. Data preparation includes lesion segmentation and affine registration. Our algorithm extracts suitable lesion patches and forwards them into a Siamese CNN trained to classify the lesion patch pairs as corresponding or non-corresponding lesions. Experiments have been performed with different input patch types and a Siamese network in 2D and 3D. The CNN model successfully learned to classify lesion assignments, reaching an accuracy of 83 % in its best configuration with an AUC = 0.91. For corresponding lesions the pipeline accomplished lesion tracking accuracy of even 89 %. We proved that a CNN may facilitate the tracking of multiple lesions in PSMA PET/CT scans. Future clinical studies are necessary if this improves the prediction of the outcome of therapies.

A Meta-Analysis of the Diagnosis of Condylar and Mandibular Fractures Based on 3-dimensional Imaging and Artificial Intelligence.

Wang F, Jia X, Meiling Z, Oscandar F, Ghani HA, Omar M, Li S, Sha L, Zhen J, Yuan Y, Zhao B, Abdullah JY

pubmed logopapersJul 8 2025
This article aims to review the literature, study the current situation of using 3D images and artificial intelligence-assisted methods to improve the rapid and accurate classification and diagnosis of condylar fractures and conduct a meta-analysis of mandibular fractures. Mandibular condyle fracture is a common fracture type in maxillofacial surgery. Accurate classification and diagnosis of condylar fractures are critical to developing an effective treatment plan. With the rapid development of 3-dimensional imaging technology and artificial intelligence (AI), traditional x-ray diagnosis is gradually replaced by more accurate technologies such as 3-dimensional computed tomography (CT). These emerging technologies provide more detailed anatomic information and significantly improve the accuracy and efficiency of condylar fracture diagnosis, especially in the evaluation and surgical planning of complex fractures. The application of artificial intelligence in medical imaging is further analyzed, especially the successful cases of fracture detection and classification through deep learning models. Although AI technology has demonstrated great potential in condylar fracture diagnosis, it still faces challenges such as data quality, model interpretability, and clinical validation. This article evaluates the accuracy and practicality of AI in diagnosing mandibular fractures through a systematic review and meta-analysis of the existing literature. The results show that AI-assisted diagnosis has high prediction accuracy in detecting condylar fractures and significantly improves diagnostic efficiency. However, more multicenter studies are still needed to verify the application of AI in different clinical settings to promote its widespread application in maxillofacial surgery.

Foundation models for radiology: fundamentals, applications, opportunities, challenges, risks, and prospects.

Akinci D'Antonoli T, Bluethgen C, Cuocolo R, Klontzas ME, Ponsiglione A, Kocak B

pubmed logopapersJul 8 2025
Foundation models (FMs) represent a significant evolution in artificial intelligence (AI), impacting diverse fields. Within radiology, this evolution offers greater adaptability, multimodal integration, and improved generalizability compared with traditional narrow AI. Utilizing large-scale pre-training and efficient fine-tuning, FMs can support diverse applications, including image interpretation, report generation, integrative diagnostics combining imaging with clinical/laboratory data, and synthetic data creation, holding significant promise for advancements in precision medicine. However, clinical translation of FMs faces several substantial challenges. Key concerns include the inherent opacity of model decision-making processes, environmental and social sustainability issues, risks to data privacy, complex ethical considerations, such as bias and fairness, and navigating the uncertainty of regulatory frameworks. Moreover, rigorous validation is essential to address inherent stochasticity and the risk of hallucination. This international collaborative effort provides a comprehensive overview of the fundamentals, applications, opportunities, challenges, and prospects of FMs, aiming to guide their responsible and effective adoption in radiology and healthcare.

Machine learning models for discriminating clinically significant from clinically insignificant prostate cancer using bi-parametric magnetic resonance imaging.

Ayyıldız H, İnce O, Korkut E, Dağoğlu Kartal MG, Tunacı A, Ertürk ŞM

pubmed logopapersJul 8 2025
This study aims to demonstrate the performance of machine learning algorithms to distinguish clinically significant prostate cancer (csPCa) from clinically insignificant prostate cancer (ciPCa) in prostate bi-parametric magnetic resonance imaging (MRI) using radiomics features. MRI images of patients who were diagnosed with cancer with histopathological confirmation following prostate MRI were collected retrospectively. Patients with a Gleason score of 3+3 were considered to have clinically ciPCa, and patients with a Gleason score of 3+4 and above were considered to have csPCa. Radiomics features were extracted from T2-weighted (T2W) images, apparent diffusion coefficient (ADC) images, and their corresponding Laplacian of Gaussian (LoG) filtered versions. Additionally, a third feature subset was created by combining the T2W and ADC images, enhancing the analysis with an integrated approach. Once the features were extracted, Pearson’s correlation coefficient and selection were performed using wrapper-based sequential algorithms. The models were then built using support vector machine (SVM) and logistic regression (LR) machine learning algorithms. The models were validated using a five-fold cross-validation technique. This study included 77 patients, 30 with ciPCA and 47 with csPCA. From each image, four images were extracted with LoG filtering, and 111 features were obtained from each image. After feature selection, 5 features were obtained from T2W images, 5 from ADC images, and 15 from the combined dataset. In the SVM model, area under the curve (AUC) values of 0.64 for T2W, 0.86 for ADC, and 0.86 for the combined dataset were obtained in the test set. In the LR model, AUC values of 0.79 for T2W, 0.86 for ADC, and 0.85 for the combined dataset were obtained. Machine learning models developed with radiomics can provide a decision support system to complement pathology results and help avoid invasive procedures such as re-biopsies or follow-up biopsies that are sometimes necessary today. This study demonstrates that machine learning models using radiomics features derived from bi-parametric MRI can discriminate csPCa from clinically insignificant PCa. These findings suggest that radiomics-based machine learning models have the potential to reduce the need for re-biopsy in cases of indeterminate pathology, assist in diagnosing pathology–radiology discordance, and support treatment decision-making in the management of PCa.

Integrating Machine Learning into Myositis Research: a Systematic Review.

Juarez-Gomez C, Aguilar-Vazquez A, Gonzalez-Gauna E, Garcia-Ordoñez GP, Martin-Marquez BT, Gomez-Rios CA, Becerra-Jimenez J, Gaspar-Ruiz A, Vazquez-Del Mercado M

pubmed logopapersJul 8 2025
Idiopathic inflammatory myopathies (IIM) are a group of autoimmune rheumatic diseases characterized by proximal muscle weakness and extra muscular manifestations. Since 1975, these IIM have been classified into different clinical phenotypes. Each clinical phenotype is associated with a better or worse prognosis and a particular physiopathology. Machine learning (ML) is a fascinating field of knowledge with worldwide applications in different fields. In IIM, ML is an emerging tool assessed in very specific clinical contexts as a complementary tool for research purposes, including transcriptome profiles in muscle biopsies, differential diagnosis using magnetic resonance imaging (MRI), and ultrasound (US). With the cancer-associated risk and predisposing factors for interstitial lung disease (ILD) development, this systematic review evaluates 23 original studies using supervised learning models, including logistic regression (LR), random forest (RF), support vector machines (SVM), and convolutional neural networks (CNN), with performance assessed primarily through the area under the curve coupled with the receiver operating characteristic (AUC-ROC).

LangMamba: A Language-driven Mamba Framework for Low-dose CT Denoising with Vision-language Models

Zhihao Chen, Tao Chen, Chenhui Wang, Qi Gao, Huidong Xie, Chuang Niu, Ge Wang, Hongming Shan

arxiv logopreprintJul 8 2025
Low-dose computed tomography (LDCT) reduces radiation exposure but often degrades image quality, potentially compromising diagnostic accuracy. Existing deep learning-based denoising methods focus primarily on pixel-level mappings, overlooking the potential benefits of high-level semantic guidance. Recent advances in vision-language models (VLMs) suggest that language can serve as a powerful tool for capturing structured semantic information, offering new opportunities to improve LDCT reconstruction. In this paper, we introduce LangMamba, a Language-driven Mamba framework for LDCT denoising that leverages VLM-derived representations to enhance supervision from normal-dose CT (NDCT). LangMamba follows a two-stage learning strategy. First, we pre-train a Language-guided AutoEncoder (LangAE) that leverages frozen VLMs to map NDCT images into a semantic space enriched with anatomical information. Second, we synergize LangAE with two key components to guide LDCT denoising: Semantic-Enhanced Efficient Denoiser (SEED), which enhances NDCT-relevant local semantic while capturing global features with efficient Mamba mechanism, and Language-engaged Dual-space Alignment (LangDA) Loss, which ensures that denoised images align with NDCT in both perceptual and semantic spaces. Extensive experiments on two public datasets demonstrate that LangMamba outperforms conventional state-of-the-art methods, significantly improving detail preservation and visual fidelity. Remarkably, LangAE exhibits strong generalizability to unseen datasets, thereby reducing training costs. Furthermore, LangDA loss improves explainability by integrating language-guided insights into image reconstruction and offers a plug-and-play fashion. Our findings shed new light on the potential of language as a supervisory signal to advance LDCT denoising. The code is publicly available on https://github.com/hao1635/LangMamba.

A novel framework for fully-automated co-registration of intravascular ultrasound and optical coherence tomography imaging data

Xingwei He, Kit Mills Bransby, Ahmet Emir Ulutas, Thamil Kumaran, Nathan Angelo Lecaros Yap, Gonul Zeren, Hesong Zeng, Yaojun Zhang, Andreas Baumbach, James Moon, Anthony Mathur, Jouke Dijkstra, Qianni Zhang, Lorenz Raber, Christos V Bourantas

arxiv logopreprintJul 8 2025
Aims: To develop a deep-learning (DL) framework that will allow fully automated longitudinal and circumferential co-registration of intravascular ultrasound (IVUS) and optical coherence tomography (OCT) images. Methods and results: Data from 230 patients (714 vessels) with acute coronary syndrome that underwent near-infrared spectroscopy (NIRS)-IVUS and OCT imaging in their non-culprit vessels were included in the present analysis. The lumen borders annotated by expert analysts in 61,655 NIRS-IVUS and 62,334 OCT frames, and the side branches and calcific tissue identified in 10,000 NIRS-IVUS frames and 10,000 OCT frames, were used to train DL solutions for the automated extraction of these features. The trained DL solutions were used to process NIRS-IVUS and OCT images and their output was used by a dynamic time warping algorithm to co-register longitudinally the NIRS-IVUS and OCT images, while the circumferential registration of the IVUS and OCT was optimized through dynamic programming. On a test set of 77 vessels from 22 patients, the DL method showed high concordance with the expert analysts for the longitudinal and circumferential co-registration of the two imaging sets (concordance correlation coefficient >0.99 for the longitudinal and >0.90 for the circumferential co-registration). The Williams Index was 0.96 for longitudinal and 0.97 for circumferential co-registration, indicating a comparable performance to the analysts. The time needed for the DL pipeline to process imaging data from a vessel was <90s. Conclusion: The fully automated, DL-based framework introduced in this study for the co-registration of IVUS and OCT is fast and provides estimations that compare favorably to the expert analysts. These features renders it useful in research in the analysis of large-scale data collected in studies that incorporate multimodality imaging to characterize plaque composition.

An autonomous agent for auditing and improving the reliability of clinical AI models

Lukas Kuhn, Florian Buettner

arxiv logopreprintJul 8 2025
The deployment of AI models in clinical practice faces a critical challenge: models achieving expert-level performance on benchmarks can fail catastrophically when confronted with real-world variations in medical imaging. Minor shifts in scanner hardware, lighting or demographics can erode accuracy, but currently reliability auditing to identify such catastrophic failure cases before deployment is a bespoke and time-consuming process. Practitioners lack accessible and interpretable tools to expose and repair hidden failure modes. Here we introduce ModelAuditor, a self-reflective agent that converses with users, selects task-specific metrics, and simulates context-dependent, clinically relevant distribution shifts. ModelAuditor then generates interpretable reports explaining how much performance likely degrades during deployment, discussing specific likely failure modes and identifying root causes and mitigation strategies. Our comprehensive evaluation across three real-world clinical scenarios - inter-institutional variation in histopathology, demographic shifts in dermatology, and equipment heterogeneity in chest radiography - demonstrates that ModelAuditor is able correctly identify context-specific failure modes of state-of-the-art models such as the established SIIM-ISIC melanoma classifier. Its targeted recommendations recover 15-25% of performance lost under real-world distribution shift, substantially outperforming both baseline models and state-of-the-art augmentation methods. These improvements are achieved through a multi-agent architecture and execute on consumer hardware in under 10 minutes, costing less than US$0.50 per audit.

Just Say Better or Worse: A Human-AI Collaborative Framework for Medical Image Segmentation Without Manual Annotations

Yizhe Zhang

arxiv logopreprintJul 8 2025
Manual annotation of medical images is a labor-intensive and time-consuming process, posing a significant bottleneck in the development and deployment of robust medical imaging AI systems. This paper introduces a novel Human-AI collaborative framework for medical image segmentation that substantially reduces the annotation burden by eliminating the need for explicit manual pixel-level labeling. The core innovation lies in a preference learning paradigm, where human experts provide minimal, intuitive feedback -- simply indicating whether an AI-generated segmentation is better or worse than a previous version. The framework comprises four key components: (1) an adaptable foundation model (FM) for feature extraction, (2) label propagation based on feature similarity, (3) a clicking agent that learns from human better-or-worse feedback to decide where to click and with which label, and (4) a multi-round segmentation learning procedure that trains a state-of-the-art segmentation network using pseudo-labels generated by the clicking agent and FM-based label propagation. Experiments on three public datasets demonstrate that the proposed approach achieves competitive segmentation performance using only binary preference feedback, without requiring experts to directly manually annotate the images.
Page 190 of 3593587 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.