Sort by:
Page 18 of 22220 results

A Comprehensive Study on Medical Image Segmentation using Deep Neural Networks

Loan Dao, Ngoc Quoc Ly

arxiv logopreprintJun 4 2025
Over the past decade, Medical Image Segmentation (MIS) using Deep Neural Networks (DNNs) has achieved significant performance improvements and holds great promise for future developments. This paper presents a comprehensive study on MIS based on DNNs. Intelligent Vision Systems are often evaluated based on their output levels, such as Data, Information, Knowledge, Intelligence, and Wisdom (DIKIW),and the state-of-the-art solutions in MIS at these levels are the focus of research. Additionally, Explainable Artificial Intelligence (XAI) has become an important research direction, as it aims to uncover the "black box" nature of previous DNN architectures to meet the requirements of transparency and ethics. The study emphasizes the importance of MIS in disease diagnosis and early detection, particularly for increasing the survival rate of cancer patients through timely diagnosis. XAI and early prediction are considered two important steps in the journey from "intelligence" to "wisdom." Additionally, the paper addresses existing challenges and proposes potential solutions to enhance the efficiency of implementing DNN-based MIS.

Retrieval-Augmented Generation with Large Language Models in Radiology: From Theory to Practice.

Fink A, Rau A, Reisert M, Bamberg F, Russe MF

pubmed logopapersJun 4 2025
<i>"Just Accepted" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Large language models (LLMs) hold substantial promise in addressing the growing workload in radiology, but recent studies also reveal limitations, such as hallucinations and opacity in sources for LLM responses. Retrieval-augmented Generation (RAG) based LLMs offer a promising approach to streamline radiology workflows by integrating reliable, verifiable, and customizable information. Ongoing refinement is critical to enable RAG models to manage large amounts of input data and to engage in complex multiagent dialogues. This report provides an overview of recent advances in LLM architecture, including few-shot and zero-shot learning, RAG integration, multistep reasoning, and agentic RAG, and identifies future research directions. Exemplary cases demonstrate the practical application of these techniques in radiology practice. ©RSNA, 2025.

Gender and Ethnicity Bias of Text-to-Image Generative Artificial Intelligence in Medical Imaging, Part 2: Analysis of DALL-E 3.

Currie G, Hewis J, Hawk E, Rohren E

pubmed logopapersJun 4 2025
Disparity among gender and ethnicity remains an issue across medicine and health science. Only 26%-35% of trainee radiologists are female, despite more than 50% of medical students' being female. Similar gender disparities are evident across the medical imaging professions. Generative artificial intelligence text-to-image production could reinforce or amplify gender biases. <b>Methods:</b> In March 2024, DALL-E 3 was utilized via GPT-4 to generate a series of individual and group images of medical imaging professionals: radiologist, nuclear medicine physician, radiographer, nuclear medicine technologist, medical physicist, radiopharmacist, and medical imaging nurse. Multiple iterations of images were generated using a variety of prompts. Collectively, 120 images were produced for evaluation of 524 characters. All images were independently analyzed by 3 expert reviewers from medical imaging professions for apparent gender and skin tone. <b>Results:</b> Collectively (individual and group images), 57.4% (<i>n</i> = 301) of medical imaging professionals were depicted as male, 42.4% (<i>n</i> = 222) as female, and 91.2% (<i>n</i> = 478) as having a light skin tone. The male gender representation was 65% for radiologists, 62% for nuclear medicine physicians, 52% for radiographers, 56% for nuclear medicine technologists, 62% for medical physicists, 53% for radiopharmacists, and 26% for medical imaging nurses. For all professions, this overrepresents men compared with women. There was no representation of persons with a disability. <b>Conclusion:</b> This evaluation reveals a significant overrepresentation of the male gender associated with generative artificial intelligence text-to-image production using DALL-E 3 across the medical imaging professions. Generated images have a disproportionately high representation of white men, which is not representative of the diversity of the medical imaging professions.

Advancements in Artificial Intelligence Applications for Cardiovascular Disease Research

Yuanlin Mo, Haishan Huang, Bocheng Liang, Weibo Ma

arxiv logopreprintJun 4 2025
Recent advancements in artificial intelligence (AI) have revolutionized cardiovascular medicine, particularly through integration with computed tomography (CT), magnetic resonance imaging (MRI), electrocardiography (ECG) and ultrasound (US). Deep learning architectures, including convolutional neural networks and generative adversarial networks, enable automated analysis of medical imaging and physiological signals, surpassing human capabilities in diagnostic accuracy and workflow efficiency. However, critical challenges persist, including the inability to validate input data accuracy, which may propagate diagnostic errors. This review highlights AI's transformative potential in precision diagnostics while underscoring the need for robust validation protocols to ensure clinical reliability. Future directions emphasize hybrid models integrating multimodal data and adaptive algorithms to refine personalized cardiovascular care.

Artificial intelligence in bone metastasis analysis: Current advancements, opportunities and challenges.

Afnouch M, Bougourzi F, Gaddour O, Dornaika F, Ahmed AT

pubmed logopapersJun 3 2025
Artificial Intelligence is transforming medical imaging, particularly in the analysis of bone metastases (BM), a serious complication of advanced cancers. Machine learning and deep learning techniques offer new opportunities to improve detection, recognition, and segmentation of bone metastasis. Yet, challenges such as limited data, interpretability, and clinical validation remain. Following PRISMA guidelines, we reviewed artificial intelligence methods and applications for bone metastasis analysis across major imaging modalities including CT, MRI, PET, SPECT, and bone scintigraphy. The survey includes traditional machine learning models and modern deep learning architectures such as CNNs and transformers. We also examined available datasets and their effect in developing artificial intelligence in this field. Artificial intelligence models have achieved strong performance across tasks and modalities, with Convolutional Neural Network (CNN) and Transformer architectures showing particularly efficient performance across different tasks. However, limitations persist, including data imbalance, overfitting risks, and the need for greater transparency. Clinical translation is also challenged by regulatory and validation hurdles. Artificial intelligence holds strong potential to improve BM diagnosis and streamline radiology workflows. To reach clinical maturity, future work must address data diversity, model explainability, and large-scale validation, which are critical steps for being trusted to be integrated into the oncology care routines.

Artificial Intelligence-Driven Innovations in Diabetes Care and Monitoring

Abdul Rahman, S., Mahadi, M., Yuliana, D., Budi Susilo, Y. K., Ariffin, A. E., Amgain, K.

medrxiv logopreprintJun 2 2025
This study explores Artificial Intelligence (AI)s transformative role in diabetes care and monitoring, focusing on innovations that optimize patient outcomes. AI, particularly machine learning and deep learning, significantly enhances early detection of complications like diabetic retinopathy and improves screening efficacy. The methodology employs a bibliometric analysis using Scopus, VOSviewer, and Publish or Perish, analyzing 235 articles from 2023-2025. Results indicate a strong interdisciplinary focus, with Computer Science and Medicine being dominant subject areas (36.9% and 12.9% respectively). Bibliographic coupling reveals robust international collaborations led by the U.S. (1558.52 link strength), UK, and China, with key influential documents by Zhu (2023c) and Annuzzi (2023). This research highlights AIs impact on enhancing monitoring, personalized treatment, and proactive care, while acknowledging challenges in data privacy and ethical deployment. Future work should bridge technological advancements with real-world implementation to create equitable and efficient diabetes care systems.

Evaluating the performance and potential bias of predictive models for the detection of transthyretin cardiac amyloidosis

Hourmozdi, J., Easton, N., Benigeri, S., Thomas, J. D., Narang, A., Ouyang, D., Duffy, G., Upton, R., Hawkes, W., Akerman, A., Okwuosa, I., Kline, A., Kho, A. N., Luo, Y., Shah, S. J., Ahmad, F. S.

medrxiv logopreprintJun 2 2025
BackgroundDelays in the diagnosis of transthyretin amyloid cardiomyopathy (ATTR-CM) contribute to the significant morbidity of the condition, especially in the era of disease-modifying therapies. Screening for ATTR-CM with AI and other algorithms may improve timely diagnosis, but these algorithms have not been directly compared. ObjectivesThe aim of this study was to compare the performance of four algorithms for ATTR-CM detection in a heart failure population and assess the risk for harms due to model bias. MethodsWe identified patients in an integrated health system from 2010-2022 with ATTR-CM and age- and sex-matched them to controls with heart failure to target 5% prevalence. We compared the performance of a claims-based random forest model (Huda et al. model), a regression-based score (Mayo ATTR-CM), and two deep learning echo models (EchoNet-LVH and EchoGo(R) Amyloidosis). We evaluated for bias using standard fairness metrics. ResultsThe analytical cohort included 176 confirmed cases of ATTR-CM and 3192 control patients with 79.2% self-identified as White and 9.0% as Black. The Huda et al. model performed poorly (AUC 0.49). Both deep learning echo models had a higher AUC when compared to the Mayo ATTR-CM Score (EchoNet-LVH 0.88; EchoGo Amyloidosis 0.92; Mayo ATTR-CM Score 0.79; DeLong P<0.001 for both). Bias auditing met fairness criteria for equal opportunity among patients who identified as Black. ConclusionsDeep learning, echo-based models to detect ATTR-CM demonstrated best overall discrimination when compared to two other models in external validation with low risk of harms due to racial bias.

[Applications of artificial intelligence in cardiovascular imaging: advantages, limitations, and future challenges].

Fortuni F, Petrina SM, Nicolosi GL

pubmed logopapersJun 1 2025
Artificial intelligence (AI) is rapidly transforming cardiovascular imaging, offering innovative solutions to enhance diagnostic precision, prognostic accuracy, and therapeutic decision-making. This review explores the role of AI in cardiovascular imaging, highlighting its applications, advantages, limitations, and future challenges. The discussion is structured by imaging modalities, including echocardiography, cardiac and coronary computed tomography, cardiac magnetic resonance, and nuclear cardiology. For each modality, we examine AI's contributions across the patient care continuum: from patient selection and image acquisition to quantitative and qualitative analysis, interpretation support, prognostic stratification, therapeutic guidance, and integration with other clinical data. AI applications demonstrate significant potential to streamline workflows, improve diagnostic accuracy, and provide advanced insights for complex clinical scenarios. However, several limitations must be addressed. Many AI algorithms are developed using data from single, high-expertise centers, raising concerns about their generalizability to routine clinical practice. In some cases, these algorithms may even produce misleading results. Additionally, the "black box" nature of certain AI systems poses challenges for cardiologists, making discrepancies difficult to interpret or rectify. Importantly, AI should be seen as a complementary tool rather than a replacement for cardiologists, designed to expedite routine tasks and allow clinicians to focus on complex cases. Future challenges include fostering clinician involvement in algorithm development and extending AI implementation to peripheral healthcare centers. This approach aims to enhance accessibility, understanding, and applicability of AI in everyday clinical practice, ultimately democratizing its benefits and ensuring equitable integration into healthcare systems.

The Pivotal Role of Baseline LDCT for Lung Cancer Screening in the Era of Artificial Intelligence.

De Luca GR, Diciotti S, Mascalchi M

pubmed logopapersJun 1 2025
In this narrative review, we address the ongoing challenges of lung cancer (LC) screening using chest low-dose computerized tomography (LDCT) and explore the contributions of artificial intelligence (AI), in overcoming them. We focus on evaluating the initial (baseline) LDCT examination, which provides a wealth of information relevant to the screening participant's health. This includes the detection of large-size prevalent LC and small-size malignant nodules that are typically diagnosed as LCs upon growth in subsequent annual LDCT scans. Additionally, the baseline LDCT examination provides valuable information about smoking-related comorbidities, including cardiovascular disease, chronic obstructive pulmonary disease, and interstitial lung disease (ILD), by identifying relevant markers. Notably, these comorbidities, despite the slow progression of their markers, collectively exceed LC as ultimate causes of death at follow-up in LC screening participants. Computer-assisted diagnosis tools currently improve the reproducibility of radiologic readings and reduce the false negative rate of LDCT. Deep learning (DL) tools that analyze the radiomic features of lung nodules are being developed to distinguish between benign and malignant nodules. Furthermore, AI tools can predict the risk of LC in the years following a baseline LDCT. AI tools that analyze baseline LDCT examinations can also compute the risk of cardiovascular disease or death, paving the way for personalized screening interventions. Additionally, DL tools are available for assessing osteoporosis and ILD, which helps refine the individual's current and future health profile. The primary obstacles to AI integration into the LDCT screening pathway are the generalizability of performance and the explainability.

ESR Essentials: how to get to valuable radiology AI: the role of early health technology assessment-practice recommendations by the European Society of Medical Imaging Informatics.

Kemper EHM, Erenstein H, Boverhof BJ, Redekop K, Andreychenko AE, Dietzel M, Groot Lipman KBW, Huisman M, Klontzas ME, Vos F, IJzerman M, Starmans MPA, Visser JJ

pubmed logopapersJun 1 2025
AI tools in radiology are revolutionising the diagnosis, evaluation, and management of patients. However, there is a major gap between the large number of developed AI tools and those translated into daily clinical practice, which can be primarily attributed to limited usefulness and trust in current AI tools. Instead of technically driven development, little effort has been put into value-based development to ensure AI tools will have a clinically relevant impact on patient care. An iterative comprehensive value evaluation process covering the complete AI tool lifecycle should be part of radiology AI development. For value assessment of health technologies, health technology assessment (HTA) is an extensively used and comprehensive method. While most aspects of value covered by HTA apply to radiology AI, additional aspects, including transparency, explainability, and robustness, are unique to radiology AI and crucial in its value assessment. Additionally, value assessment should already be included early in the design stage to determine the potential impact and subsequent requirements of the AI tool. Such early assessment should be systematic, transparent, and practical to ensure all stakeholders and value aspects are considered. Hence, early value-based development by incorporating early HTA will lead to more valuable AI tools and thus facilitate translation to clinical practice. CLINICAL RELEVANCE STATEMENT: This paper advocates for the use of early value-based assessments. These assessments promote a comprehensive evaluation on how an AI tool in development can provide value in clinical practice and thus help improve the quality of these tools and the clinical process they support. KEY POINTS: Value in radiology AI should be perceived as a comprehensive term including health technology assessment domains and AI-specific domains. Incorporation of an early health technology assessment for radiology AI during development will lead to more valuable radiology AI tools. Comprehensive and transparent value assessment of radiology AI tools is essential for their widespread adoption.
Page 18 of 22220 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.