Sort by:
Page 173 of 1731730 results

Improving lung cancer diagnosis and survival prediction with deep learning and CT imaging.

Wang X, Sharpnack J, Lee TCM

pubmed logopapersJan 1 2025
Lung cancer is a major cause of cancer-related deaths, and early diagnosis and treatment are crucial for improving patients' survival outcomes. In this paper, we propose to employ convolutional neural networks to model the non-linear relationship between the risk of lung cancer and the lungs' morphology revealed in the CT images. We apply a mini-batched loss that extends the Cox proportional hazards model to handle the non-convexity induced by neural networks, which also enables the training of large data sets. Additionally, we propose to combine mini-batched loss and binary cross-entropy to predict both lung cancer occurrence and the risk of mortality. Simulation results demonstrate the effectiveness of both the mini-batched loss with and without the censoring mechanism, as well as its combination with binary cross-entropy. We evaluate our approach on the National Lung Screening Trial data set with several 3D convolutional neural network architectures, achieving high AUC and C-index scores for lung cancer classification and survival prediction. These results, obtained from simulations and real data experiments, highlight the potential of our approach to improving the diagnosis and treatment of lung cancer.

A novel spectral transformation technique based on special functions for improved chest X-ray image classification.

Aljohani A

pubmed logopapersJan 1 2025
Chest X-ray image classification plays an important role in medical diagnostics. Machine learning algorithms enhanced the performance of these classification algorithms by introducing advance techniques. These classification algorithms often requires conversion of a medical data to another space in which the original data is reduced to important values or moments. We developed a mechanism which converts a given medical image to a spectral space which have a base set composed of special functions. In this study, we propose a chest X-ray image classification method based on spectral coefficients. The spectral coefficients are based on an orthogonal system of Legendre type smooth polynomials. We developed the mathematical theory to calculate spectral moment in Legendre polynomails space and use these moments to train traditional classifier like SVM and random forest for a classification task. The procedure is applied to a latest data set of X-Ray images. The data set is composed of X-Ray images of three different classes of patients, normal, Covid infected and pneumonia. The moments designed in this study, when used in SVM or random forest improves its ability to classify a given X-Ray image at a high accuracy. A parametric study of the proposed approach is presented. The performance of these spectral moments is checked in Support vector machine and Random forest algorithm. The efficiency and accuracy of the proposed method is presented in details. All our simulation is performed in computation softwares, Matlab and Python. The image pre processing and spectral moments generation is performed in Matlab and the implementation of the classifiers is performed with python. It is observed that the proposed approach works well and provides satisfactory results (0.975 accuracy), however further studies are required to establish a more accurate and fast version of this approach.

SA-UMamba: Spatial attention convolutional neural networks for medical image segmentation.

Liu L, Huang Z, Wang S, Wang J, Liu B

pubmed logopapersJan 1 2025
Medical image segmentation plays an important role in medical diagnosis and treatment. Most recent medical image segmentation methods are based on a convolutional neural network (CNN) or Transformer model. However, CNN-based methods are limited by locality, whereas Transformer-based methods are constrained by the quadratic complexity of attention computations. Alternatively, the state-space model-based Mamba architecture has garnered widespread attention owing to its linear computational complexity for global modeling. However, Mamba and its variants are still limited in their ability to extract local receptive field features. To address this limitation, we propose a novel residual spatial state-space (RSSS) block that enhances spatial feature extraction by integrating global and local representations. The RSSS block combines the Mamba module for capturing global dependencies with a receptive field attention convolution (RFAC) module to extract location-sensitive local patterns. Furthermore, we introduce a residual adjust strategy to dynamically fuse global and local information, improving spatial expressiveness. Based on the RSSS block, we design a U-shaped SA-UMamba segmentation framework that effectively captures multi-scale spatial context across different stages. Experiments conducted on the Synapse, ISIC17, ISIC18 and CVC-ClinicDB datasets validate the segmentation performance of our proposed SA-UMamba framework.

Providing context: Extracting non-linear and dynamic temporal motifs from brain activity.

Geenjaar E, Kim D, Calhoun V

pubmed logopapersJan 1 2025
Approaches studying the dynamics of resting-state functional magnetic resonance imaging (rs-fMRI) activity often focus on time-resolved functional connectivity (tr-FC). While many tr-FC approaches have been proposed, most are linear approaches, e.g. computing the linear correlation at a timestep or within a window. In this work, we propose to use a generative non-linear deep learning model, a disentangled variational autoencoder (DSVAE), that factorizes out window-specific (context) information from timestep-specific (local) information. This has the advantage of allowing our model to capture differences at multiple temporal scales. We find that by separating out temporal scales our model's window-specific embeddings, or as we refer to them, context embeddings, more accurately separate windows from schizophrenia patients and control subjects than baseline models and the standard tr-FC approach in a low-dimensional space. Moreover, we find that for individuals with schizophrenia, our model's context embedding space is significantly correlated with both age and symptom severity. Interestingly, patients appear to spend more time in three clusters, one closer to controls which shows increased visual-sensorimotor, cerebellar-subcortical, and reduced cerebellar-visual functional network connectivity (FNC), an intermediate station showing increased subcortical-sensorimotor FNC, and one that shows decreased visual-sensorimotor, decreased subcortical-sensorimotor, and increased visual-subcortical domains. We verify that our model captures features that are complementary to - but not the same as - standard tr-FC features. Our model can thus help broaden the neuroimaging toolset in analyzing fMRI dynamics and shows potential as an approach for finding psychiatric links that are more sensitive to individual and group characteristics.

3D-MRI brain glioma intelligent segmentation based on improved 3D U-net network.

Wang T, Wu T, Yang D, Xu Y, Lv D, Jiang T, Wang H, Chen Q, Xu S, Yan Y, Lin B

pubmed logopapersJan 1 2025
To enhance glioma segmentation, a 3D-MRI intelligent glioma segmentation method based on deep learning is introduced. This method offers significant guidance for medical diagnosis, grading, and treatment strategy selection. Glioma case data were sourced from the BraTS2023 public dataset. Firstly, we preprocess the dataset, including 3D clipping, resampling, artifact elimination and normalization. Secondly, in order to enhance the perception ability of the network to different scale features, we introduce the space pyramid pool module. Then, by making the model focus on glioma details and suppressing irrelevant background information, we propose a multi-scale fusion attention mechanism; And finally, to address class imbalance and enhance learning of misclassified voxels, a combination of Dice and Focal loss functions was employed, creating a loss function, this method not only maintains the accuracy of segmentation, It also improves the recognition of challenge samples, thus improving the accuracy and generalization of the model in glioma segmentation. Experimental findings reveal that the enhanced 3D U-Net network model stabilizes training loss at 0.1 after 150 training iterations. The refined model demonstrates superior performance with the highest DSC, Recall, and Precision values of 0.7512, 0.7064, and 0.77451, respectively. In Whole Tumor (WT) segmentation, the Dice Similarity Coefficient (DSC), Recall, and Precision scores are 0.9168, 0.9426, and 0.9375, respectively. For Core Tumor (TC) segmentation, these scores are 0.8954, 0.9014, and 0.9369, respectively. In Enhanced Tumor (ET) segmentation, the method achieves DSC, Recall, and Precision values of 0.8674, 0.9045, and 0.9011, respectively. The DSC, Recall, and Precision indices in the WT, TC, and ET segments using this method are the highest recorded, significantly enhancing glioma segmentation. This improvement bolsters the accuracy and reliability of diagnoses, ultimately providing a scientific foundation for clinical diagnosis and treatment.

Same-model and cross-model variability in knee cartilage thickness measurements using 3D MRI systems.

Katano H, Kaneko H, Sasaki E, Hashiguchi N, Nagai K, Ishijima M, Ishibashi Y, Adachi N, Kuroda R, Tomita M, Masumoto J, Sekiya I

pubmed logopapersJan 1 2025
Magnetic Resonance Imaging (MRI) based three-dimensional analysis of knee cartilage has evolved to become fully automatic. However, when implementing these measurements across multiple clinical centers, scanner variability becomes a critical consideration. Our purposes were to quantify and compare same-model variability (between repeated scans on the same MRI system) and cross-model variability (across different MRI systems) in knee cartilage thickness measurements using MRI scanners from five manufacturers, as analyzed with a specific 3D volume analysis software. Ten healthy volunteers (eight males and two females, aged 22-60 years) underwent two scans of their right knee on 3T MRI systems from five manufacturers (Canon, Fujifilm, GE, Philips, and Siemens). The imaging protocol included fat-suppressed spoiled gradient echo and proton density weighted sequences. Cartilage regions were automatically segmented into 7 subregions using a specific deep learning-based 3D volume analysis software. This resulted in 350 measurements for same-model variability and 2,800 measurements for cross-model variability. For same-model variability, 82% of measurements showed variability ≤0.10 mm, and 98% showed variability ≤0.20 mm. For cross-model variability, 51% showed variability ≤0.10 mm, and 84% showed variability ≤0.20 mm. The mean same-model variability (0.06 ± 0.05 mm) was significantly lower than cross-model variability (0.11 ± 0.09 mm) (p < 0.001). This study demonstrates that knee cartilage thickness measurements exhibit significantly higher variability across different MRI systems compared to repeated measurements on the same system, when analyzed using this specific software. This finding has important implications for multi-center studies and longitudinal assessments using different MRI systems and highlights the software-dependent nature of such variability assessments.

RRFNet: A free-anchor brain tumor detection and classification network based on reparameterization technology.

Liu W, Guo X

pubmed logopapersJan 1 2025
Advancements in medical imaging technology have facilitated the acquisition of high-quality brain images through computed tomography (CT) or magnetic resonance imaging (MRI), enabling professional brain specialists to diagnose brain tumors more effectively. However, manual diagnosis is time-consuming, which has led to the growing importance of automatic detection and classification through brain imaging. Conventional object detection models for brain tumor detection face limitations in brain tumor detection owing to the significant differences between medical images and natural scene images, as well as challenges such as complex backgrounds, noise interference, and blurred boundaries between cancerous and normal tissues. This study investigates the application of deep learning to brain tumor detection, analyzing the effect of three factors, the number of model parameters, input data batch size, and the use of anchor boxes, on detection performance. Experimental results reveal that an excessive number of model parameters or the use of anchor boxes may reduce detection accuracy. However, increasing the number of brain tumor samples improves detection performance. This study, introduces a backbone network built using RepConv and RepC3, along with FGConcat feature map splicing module to optimize the brain tumor detection model. The experimental results show that the proposed RepConv-RepC3-FGConcat Network (RRFNet) can learn underlying semantic information about brain tumors during training stage, while maintaining a low number of parameters during inference, which improves the speed of brain tumor detection. Compared with YOLOv8, RRFNet achieved a higher accuracy in brain tumor detection, with a mAP value of 79.2%. This optimized approach enhances both accuracy and efficiency, which is essential in clinical settings where time and precision are critical.

Enhancement of Fairness in AI for Chest X-ray Classification.

Jackson NJ, Yan C, Malin BA

pubmed logopapersJan 1 2024
The use of artificial intelligence (AI) in medicine has shown promise to improve the quality of healthcare decisions. However, AI can be biased in a manner that produces unfair predictions for certain demographic subgroups. In MIMIC-CXR, a publicly available dataset of over 300,000 chest X-ray images, diagnostic AI has been shown to have a higher false negative rate for racial minorities. We evaluated the capacity of synthetic data augmentation, oversampling, and demographic-based corrections to enhance the fairness of AI predictions. We show that adjusting unfair predictions for demographic attributes, such as race, is ineffective at improving fairness or predictive performance. However, using oversampling and synthetic data augmentation to modify disease prevalence reduced such disparities by 74.7% and 10.6%, respectively. Moreover, such fairness gains were accomplished without reduction in performance (95% CI AUC: [0.816, 0.820] versus [0.810, 0.819] versus [0.817, 0.821] for baseline, oversampling, and augmentation, respectively).

Ensuring Fairness in Detecting Mild Cognitive Impairment with MRI.

Tong B, Edwards T, Yang S, Hou B, Tarzanagh DA, Urbanowicz RJ, Moore JH, Ritchie MD, Davatzikos C, Shen L

pubmed logopapersJan 1 2024
Machine learning (ML) algorithms play a crucial role in the early and accurate diagnosis of Alzheimer's Disease (AD), which is essential for effective treatment planning. However, existing methods are not well-suited for identifying Mild Cognitive Impairment (MCI), a critical transitional stage between normal aging and AD. This inadequacy is primarily due to label imbalance and bias from different sensitve attributes in MCI classification. To overcome these challenges, we have designed an end-to-end fairness-aware approach for label-imbalanced classification, tailored specifically for neuroimaging data. This method, built on the recently developed FACIMS framework, integrates into STREAMLINE, an automated ML environment. We evaluated our approach against nine other ML algorithms and found that it achieves comparable balanced accuracy to other methods while prioritizing fairness in classifications with five different sensitive attributes. This analysis contributes to the development of equitable and reliable ML diagnostics for MCI detection.

Integrating AI into Clinical Workflows: A Simulation Study on Implementing AI-aided Same-day Diagnostic Testing Following an Abnormal Screening Mammogram.

Lin Y, Hoyt AC, Manuel VG, Inkelas M, Maehara CK, Ayvaci MUS, Ahsen ME, Hsu W

pubmed logopapersJan 1 2024
Artificial intelligence (AI) shows promise in clinical tasks, yet its integration into workflows remains underexplored. This study proposes an AI-aided same-day diagnostic imaging workup to reduce recall rates following abnormal screening mammograms and alleviate patient anxiety while waiting for the diagnostic examinations. Using discrete simulation, we found minimal disruption to the workflow (a 4% reduction in daily patient volume or a 2% increase in operating time) under specific conditions: operation from 9 am to 12 pm with all radiologists managing all patient types (screenings, diagnostics, and biopsies). Costs specific to the AI-aided same-day diagnostic workup include AI software expenses and potential losses from unused pre-reserved slots for same-day diagnostic workups. These simulation findings can inform the implementation of an AI-aided same-day diagnostic workup, with future research focusing on its potential benefits, including improved patient satisfaction, reduced anxiety, lower recall rates, and shorter time to cancer diagnoses and treatment.
Page 173 of 1731730 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.