The best diagnostic approach for classifying ischemic stroke onset time: A systematic review and meta-analysis.
Authors
Affiliations (4)
Affiliations (4)
- Ilam University of Medical Sciences, Ilam, Islamic Republic of Iran. [email protected].
- Salahaddin University-Erbil, Erbil, Iraq.
- Cihan University-Erbil, Erbil, Iraq.
- Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.
Abstract
The success of intravenous thrombolysis with tPA (IV-tPA) as the fastest and easiest treatment for stroke patients is closely related to time since stroke onset (TSS). Administering IV-tPA after the recommended time interval (< 4.5 h) increases the risk of cerebral hemorrhage. Despite advances in diagnostic approaches have been made, the determination of TSS remains a clinical challenge. In this study, the performances of different diagnostic approaches were investigated to classify TSS. A systematic literature search was conducted in Web of Science, Pubmed, Scopus, Embase, and Cochrane databases until July 2025. The overall AUC, sensitivity, and specificity magnitudes with their 95%CIs were determined for each diagnostic approach to evaluate their classification performances. This systematic review retrieved a total number of 9030 stroke patients until July 2025. The results showed that the human readings of DWI-FLAIR mismatch as the current gold standard method with AUC = 0.71 (95%CI: 0.66-0.76), sensitivity = 0.62 (95%CI: 0.54-0.71), and specificity = 0.78 (95%CI: 0.72-0.84) has a moderate performance to identify the TSS. ML model fed by radiomic features of CT data with AUC = 0.89 (95%CI: 0.80-0.98), sensitivity = 0.85 (95%CI: 0.75-0.96), and specificity = 0.86 (95%CI: 0.73-1.00) has the best performance in classifying TSS among the models reviewed. ML models fed by radiomic features better classify TSS than the human reading of DWI-FLAIR mismatch. An efficient AI model fed by CT radiomic data could yield the best classification performance to determine patients' eligibility for IV-tPA treatment and improve treatment outcomes.