Sort by:
Page 16 of 32311 results

Artificial Intelligence-Enabled Point-of-Care Echocardiography: Bringing Precision Imaging to the Bedside.

East SA, Wang Y, Yanamala N, Maganti K, Sengupta PP

pubmed logopapersJul 7 2025
The integration of artificial intelligence (AI) with point-of-care ultrasound (POCUS) is transforming cardiovascular diagnostics by enhancing image acquisition, interpretation, and workflow efficiency. These advancements hold promise in expanding access to cardiovascular imaging in resource-limited settings and enabling early disease detection through screening applications. This review explores the opportunities and challenges of AI-enabled POCUS as it reshapes the landscape of cardiovascular imaging. AI-enabled systems can reduce operator dependency, improve image quality, and support clinicians-both novice and experienced-in capturing diagnostically valuable images, ultimately promoting consistency across diverse clinical environments. However, widespread adoption faces significant challenges, including concerns around algorithm generalizability, bias, explainability, clinician trust, and data privacy. Addressing these issues through standardized development, ethical oversight, and clinician-AI collaboration will be critical to safe and effective implementation. Looking ahead, emerging innovations-such as autonomous scanning, real-time predictive analytics, tele-ultrasound, and patient-performed imaging-underscore the transformative potential of AI-enabled POCUS in reshaping cardiovascular care and advancing equitable healthcare delivery worldwide.

Potential Time and Recall Benefits for Adaptive AI-Based Breast Cancer MRI Screening.

Balkenende L, Ferm J, van Veldhuizen V, Brunekreef J, Teuwen J, Mann RM

pubmed logopapersJul 7 2025
Abbreviated breast MRI protocols are advocated for breast screening as they limit acquisition duration and increase resource availability. However, radiologists' specificity may be slightly lowered when only such short protocols are evaluated. An adaptive approach, where a full protocol is performed only when abnormalities are detected by artificial intelligence (AI)-based models in the abbreviated protocol, might improve and speed up MRI screening. This study explores the potential benefits of such an approach. To assess the potential impact of adaptive breast MRI scanning based on AI detection of malignancies. Mathematical model. Breast cancer screening protocols. Theoretical upper and lower limits on expected protocol duration and recall rate were determined for the adaptive approach, and the influence of the AI model and radiologists' performance metrics on these limits was assessed, under the assumption that any finding on the abbreviated protocol would, in an ideal follow-up scenario, prompt a second MRI with the full protocol. Estimated most likely scenario. Theoretical limits for the proposed adaptive AI-based MRI breast cancer screening showed that the recall rates of the abbreviated and full screening protocols always constrained the recall rate. These abbreviated and full protocols did not fully constrain the expected protocol duration, and an adaptive protocol's expected duration could thus be shorter than the abbreviated protocol duration. Specificity, either from AI models or radiologists, has the largest effect on the theoretical limits. In the most likely scenario, the adaptive protocol achieved an expected protocol duration reduction of ~47%-60% compared with the full protocol. The proposed adaptive approach may offer a reduction in expected protocol duration compared with the use of the full protocol alone, and a lower recall rate relative to an abbreviated-only approach could be achieved. Optimal performance was observed when AI models emulated radiologists' decision-making behavior, rather than focusing solely on near-perfect malignancy detection. Not applicable. Stage 6.

Early warning and stratification of the elderly cardiopulmonary dysfunction-related diseases: multicentre prospective study protocol.

Zhou X, Jin Q, Xia Y, Guan Y, Zhang Z, Guo Z, Liu Z, Li C, Bai Y, Hou Y, Zhou M, Liao WH, Lin H, Wang P, Liu S, Fan L

pubmed logopapersJul 5 2025
In China, there is a lack of standardised clinical imaging databases for multidimensional evaluation of cardiopulmonary diseases. To address this gap, this study protocol launched a project to build a clinical imaging technology integration and a multicentre database for early warning and stratification of cardiopulmonary dysfunction in the elderly. This study employs a cross-sectional design, enrolling over 6000 elderly participants from five regions across China to evaluate cardiopulmonary function and related diseases. Based on clinical criteria, participants are categorized into three groups: a healthy cardiopulmonary function group, a functional decrease group and an established cardiopulmonary diseases group. All subjects will undergo comprehensive assessments including chest CT scans, echocardiography, and laboratory examinations. Additionally, at least 50 subjects will undergo cardiopulmonary exercise testing (CPET). By leveraging artificial intelligence technology, multimodal data will be integrated to establish reference ranges for cardiopulmonary function in the elderly population, as well as to develop early-warning models and severity grading standard models. The study has been approved by the local ethics committee of Shanghai Changzheng Hospital (approval number: 2022SL069A). All the participants will sign the informed consent. The results will be disseminated through peer-reviewed publications and conferences.

Clinical obstacles to machine-learning POCUS adoption and system-wide AI implementation (The COMPASS-AI survey).

Wong A, Roslan NL, McDonald R, Noor J, Hutchings S, D'Costa P, Via G, Corradi F

pubmed logopapersJul 3 2025
Point-of-care ultrasound (POCUS) has become indispensable in various medical specialties. The integration of artificial intelligence (AI) and machine learning (ML) holds significant promise to enhance POCUS capabilities further. However, a comprehensive understanding of healthcare professionals' perspectives on this integration is lacking. This study aimed to investigate the global perceptions, familiarity, and adoption of AI in POCUS among healthcare professionals. An international, web-based survey was conducted among healthcare professionals involved in POCUS. The survey instrument included sections on demographics, familiarity with AI, perceived utility, barriers (technological, training, trust, workflow, legal/ethical), and overall perceptions regarding AI-assisted POCUS. The data was analysed by descriptive statistics, frequency distributions, and group comparisons (using chi-square/Fisher's exact test and t-test/Mann-Whitney U test). This study surveyed 1154 healthcare professionals on perceived barriers to implementing AI in point-of-care ultrasound. Despite general enthusiasm, with 81.1% of respondents expressing agreement or strong agreement, significant barriers were identified. The most frequently cited single greatest barriers were Training & Education (27.1%) and Clinical Validation & Evidence (17.5%). Analysis also revealed that perceptions of specific barriers vary significantly based on demographic factors, including region of practice, medical specialty, and years of healthcare experience. This novel global survey provides critical insights into the perceptions and adoption of AI in POCUS. Findings highlight considerable enthusiasm alongside crucial challenges, primarily concerning training, validation, guidelines, and support. Addressing these barriers is essential for the responsible and effective implementation of AI in POCUS.

Differentiated thyroid cancer and positron emission computed tomography: when, how and why?

Coca Pelaz A, Rodrigo JP, Zafereo M, Nixon I, Guntinas-Lichius O, Randolph G, Civantos FJ, Pace-Asciak P, Jara MA, Kuker R, Ferlito A

pubmed logopapersJul 3 2025
Fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) has become an indispensable tool in oncology, offering both metabolic and anatomical insights into tumor behavior. Most differentiated thyroid carcinomas (DTC) are indolent and therefore FDG PET/CT is not routinely incorporated into management. However, in biologically aggressive DTCs, FDG PET/CT plays a crucial role in detecting recurrence and metastases. This narrative review with articles from the last 25 years from PubMed database, explores the evolving role of FDG PET/CT, focusing on its utility in recurrence detection, staging, and follow-up of radioactive iodine (RAI)-refractory cases. Current guidelines recommend FDG PET/CT primarily for high-risk patients with elevated thyroglobulin levels and negative RAI scans (TENIS syndrome). We also examine advancements in PET imaging, novel radiotracers and theragnostic approaches that enhance diagnostic accuracy and treatment monitoring. While FDG PET/CT has proven valuable in biologically aggressive DTC, its routine use remains limited by cost, accessibility, and concerns regarding radiation exposure in younger patients requiring repeated imaging studies. Future developments in molecular imaging, including novel tracers and artificial intelligence-driven analysis, are expected to refine its role, leading to more personalized and effective management, though economic and reimbursement challenges remain important considerations for broader adoption.

Artificial Intelligence-Driven Cancer Diagnostics: Enhancing Radiology and Pathology through Reproducibility, Explainability, and Multimodality.

Khosravi P, Fuchs TJ, Ho DJ

pubmed logopapersJul 2 2025
The integration of artificial intelligence (AI) in cancer research has significantly advanced radiology, pathology, and multimodal approaches, offering unprecedented capabilities in image analysis, diagnosis, and treatment planning. AI techniques provide standardized assistance to clinicians, in which many diagnostic and predictive tasks are manually conducted, causing low reproducibility. These AI methods can additionally provide explainability to help clinicians make the best decisions for patient care. This review explores state-of-the-art AI methods, focusing on their application in image classification, image segmentation, multiple instance learning, generative models, and self-supervised learning. In radiology, AI enhances tumor detection, diagnosis, and treatment planning through advanced imaging modalities and real-time applications. In pathology, AI-driven image analysis improves cancer detection, biomarker discovery, and diagnostic consistency. Multimodal AI approaches can integrate data from radiology, pathology, and genomics to provide comprehensive diagnostic insights. Emerging trends, challenges, and future directions in AI-driven cancer research are discussed, emphasizing the transformative potential of these technologies in improving patient outcomes and advancing cancer care. This article is part of a special series: Driving Cancer Discoveries with Computational Research, Data Science, and Machine Learning/AI.

[AI-based applications in medical image computing].

Kepp T, Uzunova H, Ehrhardt J, Handels H

pubmed logopapersJul 2 2025
The processing of medical images plays a central role in modern diagnostics and therapy. Automated processing and analysis of medical images can efficiently accelerate clinical workflows and open new opportunities for improved patient care. However, the high variability, complexity, and varying quality of medical image data pose significant challenges. In recent years, the greatest progress in medical image analysis has been achieved through artificial intelligence (AI), particularly by using deep neural networks in the context of deep learning. These methods are successfully applied in medical image analysis, including segmentation, registration, and image synthesis.AI-based segmentation allows for the precise delineation of organs, tissues, or pathological changes. The application of AI-based image registration supports the accelerated creation of 3D planning models for complex surgeries by aligning relevant anatomical structures from different imaging modalities (e.g., CT, MRI, and PET) or time points. Generative AI methods can be used to generate additional image data for the improved training of AI models, thereby expanding the potential applications of deep learning methods in medicine. Examples from radiology, ophthalmology, dermatology, and surgery are described to illustrate their practical relevance and the potential of AI in image-based diagnostics and therapy.

Knowledge mapping of ultrasound technology and triple-negative breast cancer: a visual and bibliometric analysis.

Wan Y, Shen Y, Wang J, Zhang T, Fu X

pubmed logopapersJul 1 2025
This study aims to explore the application of ultrasound technology in triple-negative breast cancer (TNBC) using bibliometric methods. It presents a visual knowledge map to exhibit global research dynamics and elucidates the research directions, hotspots, trends, and frontiers in this field. The Web of Science Core Collection database was used, and CiteSpace and VOSviewer software were employed to visualize the annual publication volume, collaborative networks (including countries, institutions, and authors), citation characteristics (such as references, co-citations, and publications), as well as keywords (including emergence and clustering) related to ultrasound applications in TNBC over the past 15 years. A total of 310 papers were included. The first paper was published in 2010, and after that, publications in this field really took off, especially after 2020. China emerged as the leading country in terms of publication volume, while Shanghai Jiao Tong University had the highest output among institutions. Memorial Sloan Kettering Cancer Center was recognized as a key research institution within this domain. Adrada BE was the most prolific author in terms of publication count. Ko Es held the highest citation frequency among authors. Co-occurrence analysis of keywords revealed that the top three keywords by frequency were "triple-negative breast cancer," "breast cancer," and "sonography." The timeline visualization indicated a strong temporal continuity in the clusters of "breast cancer," "recommendations," "biopsy," "estrogen receptor," and "radiomics." The keyword with the highest emergence value was "neoplasms" (6.80). Trend analysis of emerging terms indicated a growing focus on "machine learning approaches," "prognosis," and "molecular subtypes," with "machine learning approach" emerging as a significant keyword currently. This study provided a systematic analysis of the current state of ultrasound technology applications in TNBC. It highlighted that "machine learning methods" have emerged as a central focus and frontier in this research area, both presently and for the foreseeable future. The findings offer valuable theoretical insights for the application of ultrasound technology in TNBC diagnosis and treatment and establish a solid foundation for further advancements in medical imaging research related to TNBC.

Developments in MRI radiomics research for vascular cognitive impairment.

Chen X, Luo X, Chen L, Liu H, Yin X, Chen Z

pubmed logopapersJul 1 2025
Vascular cognitive impairment (VCI) is an umbrella term for diseases associated with cognitive decline induced by substantive brain damage following pathological changes in the cerebrovascular system. The primary clinical manifestations include behavioral abnormalities and diminished learning and memory cognitive functions. If the location and extent of brain injury are not identified early and therapeutic interventions are not promptly administered, it may lead to irreversible cognitive impairment. Therefore, the early diagnosis of VCI is crucial for its prevention and treatment. Prior to the onset of cognitive impairment in VCI, magnetic resonance imaging (MRI) radiomics can be utilized for early assessment and diagnosis, thereby guiding clinicians in providing precise treatment for patients, which holds significant potential for development. This article reviews the classification of VCI, the concept of radiomics, the application of MRI radiomics in VCI, and the limitations of radiomics in the context of advancements in its application within the central nervous system. CRITICAL RELEVANCE STATEMENT: This article explores how MRI radiomics can be used to detect VCI early, enhancing clinical radiology practice by offering a reliable method for prediction, diagnosis, and identification, which also promotes standardization in research and integration of disciplines. KEY POINTS: MRI radiomics can predict VCI early. MRI radiomics can diagnose VCI. MRI radiomics distinguishes VCI from Alzheimer's disease.

Machine learning for Parkinson's disease: a comprehensive review of datasets, algorithms, and challenges.

Shokrpour S, MoghadamFarid A, Bazzaz Abkenar S, Haghi Kashani M, Akbari M, Sarvizadeh M

pubmed logopapersJul 1 2025
Parkinson's disease (PD) is a devastating neurological ailment affecting both mobility and cognitive function, posing considerable problems to the health of the elderly across the world. The absence of a conclusive treatment underscores the requirement to investigate cutting-edge diagnostic techniques to improve patient outcomes. Machine learning (ML) has the potential to revolutionize PD detection by applying large repositories of structured data to enhance diagnostic accuracy. 133 papers published between 2021 and April 2024 were reviewed using a systematic literature review (SLR) methodology, and subsequently classified into five categories: acoustic data, biomarkers, medical imaging, movement data, and multimodal datasets. This comprehensive analysis offers valuable insights into the applications of ML in PD diagnosis. Our SLR identifies the datasets and ML algorithms used for PD diagnosis, as well as their merits, limitations, and evaluation factors. We also discuss challenges, future directions, and outstanding issues.
Page 16 of 32311 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.