Sort by:
Page 16 of 21210 results

Future prospects of deep learning in esophageal cancer diagnosis and clinical decision support (Review).

Lin A, Song L, Wang Y, Yan K, Tang H

pubmed logopapersJun 1 2025
Esophageal cancer (EC) is one of the leading causes of cancer-related mortality worldwide, still faces significant challenges in early diagnosis and prognosis. Early EC lesions often present subtle symptoms and current diagnostic methods are limited in accuracy due to tumor heterogeneity, lesion morphology and variable image quality. These limitations are particularly prominent in the early detection of precancerous lesions such as Barrett's esophagus. Traditional diagnostic approaches, such as endoscopic examination, pathological analysis and computed tomography, require improvements in diagnostic precision and staging accuracy. Deep learning (DL), a key branch of artificial intelligence, shows great promise in improving the detection of early EC lesions, distinguishing benign from malignant lesions and aiding cancer staging and prognosis. However, challenges remain, including image quality variability, insufficient data annotation and limited generalization. The present review summarized recent advances in the application of DL to medical images obtained through various imaging techniques for the diagnosis of EC at different stages. It assesses the role of DL in tumor pathology, prognosis prediction and clinical decision support, highlighting its advantages in EC diagnosis and prognosis evaluation. Finally, it provided an objective analysis of the challenges currently facing the field and prospects for future applications.

Quantifying the Unknowns of Plaque Morphology: The Role of Topological Uncertainty in Coronary Artery Disease.

Singh Y, Hathaway QA, Dinakar K, Shaw LJ, Erickson B, Lopez-Jimenez F, Bhatt DL

pubmed logopapersJun 1 2025
This article aimed to explore topological uncertainty in medical imaging, particularly in assessing coronary artery calcification using artificial intelligence (AI). Topological uncertainty refers to ambiguities in spatial and structural characteristics of medical features, which can impact the interpretation of coronary plaques. The article discusses the challenges of integrating AI with topological considerations and the need for specialized methodologies beyond traditional performance metrics. It highlights advancements in quantifying topological uncertainty, including the use of persistent homology and topological data analysis techniques. The importance of standardization in methodologies and ethical considerations in AI deployment are emphasized. It also outlines various types of uncertainty in topological frameworks for coronary plaques, categorizing them as quantifiable and controllable or quantifiable and not controllable. Future directions include developing AI algorithms that incorporate topological insights, establishing standardized protocols, and exploring ethical implications to revolutionize cardiovascular care through personalized treatment plans guided by sophisticated topological analysis. Recognizing and quantifying topological uncertainty in medical imaging as AI emerges is critical. Exploring topological uncertainty in coronary artery disease will revolutionize cardiovascular care, promising enhanced precision and personalization in diagnostics and treatment for millions affected by cardiovascular diseases.

Radiomics across modalities: a comprehensive review of neurodegenerative diseases.

Inglese M, Conti A, Toschi N

pubmed logopapersJun 1 2025
Radiomics allows extraction from medical images of quantitative features that are able to reveal tissue patterns that are generally invisible to human observers. Despite the challenges in visually interpreting radiomic features and the computational resources required to generate them, they hold significant value in downstream automated processing. For instance, in statistical or machine learning frameworks, radiomic features enhance sensitivity and specificity, making them indispensable for tasks such as diagnosis, prognosis, prediction, monitoring, image-guided interventions, and evaluating therapeutic responses. This review explores the application of radiomics in neurodegenerative diseases, with a focus on Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. While radiomics literature often focuses on magnetic resonance imaging (MRI) and computed tomography (CT), this review also covers its broader application in nuclear medicine, with use cases of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiomics. Additionally, we review integrated radiomics, where features from multiple imaging modalities are fused to improve model performance. This review also highlights the growing integration of radiomics with artificial intelligence and the need for feature standardisation and reproducibility to facilitate its translation into clinical practice.

Artificial intelligence in fetal brain imaging: Advancements, challenges, and multimodal approaches for biometric and structural analysis.

Wang L, Fatemi M, Alizad A

pubmed logopapersJun 1 2025
Artificial intelligence (AI) is transforming fetal brain imaging by addressing key challenges in diagnostic accuracy, efficiency, and data integration in prenatal care. This review explores AI's application in enhancing fetal brain imaging through ultrasound (US) and magnetic resonance imaging (MRI), with a particular focus on multimodal integration to leverage their complementary strengths. By critically analyzing state-of-the-art AI methodologies, including deep learning frameworks and attention-based architectures, this study highlights significant advancements alongside persistent challenges. Notable barriers include the scarcity of diverse and high-quality datasets, computational inefficiencies, and ethical concerns surrounding data privacy and security. Special attention is given to multimodal approaches that integrate US and MRI, combining the accessibility and real-time imaging of US with the superior soft tissue contrast of MRI to improve diagnostic precision. Furthermore, this review emphasizes the transformative potential of AI in fostering clinical adoption through innovations such as real-time diagnostic tools and human-AI collaboration frameworks. By providing a comprehensive roadmap for future research and implementation, this study underscores AI's potential to redefine fetal imaging practices, enhance diagnostic accuracy, and ultimately improve perinatal care outcomes.

Tailoring ventilation and respiratory management in pediatric critical care: optimizing care with precision medicine.

Beauchamp FO, Thériault J, Sauthier M

pubmed logopapersJun 1 2025
Critically ill children admitted to the intensive care unit frequently need respiratory care to support the lung function. Mechanical ventilation is a complex field with multiples parameters to set. The development of precision medicine will allow clinicians to personalize respiratory care and improve patients' outcomes. Lung and diaphragmatic ultrasound, electrical impedance tomography, neurally adjusted ventilatory assist ventilation, as well as the use of monitoring data in machine learning models are increasingly used to tailor care. Each modality offers insights into different aspects of the patient's respiratory system function and enables the adjustment of treatment to better support the patient's physiology. Precision medicine in respiratory care has been associated with decreased ventilation time, increased extubation and ventilation wean success and increased ability to identify phenotypes to guide treatment and predict outcomes. This review will focus on the use of precision medicine in the setting of pediatric acute respiratory distress syndrome, asthma, bronchiolitis, extubation readiness trials and ventilation weaning, ventilation acquired pneumonia and other respiratory tract infections. Precision medicine is revolutionizing respiratory care and will decrease complications associated with ventilation. More research is needed to standardize its use and better evaluate its impact on patient outcomes.

Broadening the Net: Overcoming Challenges and Embracing Novel Technologies in Lung Cancer Screening.

Czerlanis CM, Singh N, Fintelmann FJ, Damaraju V, Chang AEB, White M, Hanna N

pubmed logopapersJun 1 2025
Lung cancer is one of the leading causes of cancer-related mortality worldwide, with most cases diagnosed at advanced stages where curative treatment options are limited. Low-dose computed tomography (LDCT) for lung cancer screening (LCS) of individuals selected based on age and smoking history has shown a significant reduction in lung cancer-specific mortality. The number needed to screen to prevent one death from lung cancer is lower than that for breast cancer, cervical cancer, and colorectal cancer. Despite the substantial impact on reducing lung cancer-related mortality and proof that LCS with LDCT is effective, uptake of LCS has been low and LCS eligibility criteria remain imperfect. While LCS programs have historically faced patient recruitment challenges, research suggests that there are novel opportunities to both identify and improve screening for at-risk populations. In this review, we discuss the global obstacles to implementing LCS programs and strategies to overcome barriers in resource-limited settings. We explore successful approaches to promote LCS through robust engagement with community partners. Finally, we examine opportunities to enhance LCS in at-risk populations not captured by current eligibility criteria, including never smokers and individuals with a family history of lung cancer, with a focus on early detection through novel artificial intelligence technologies.

Advanced Three-Dimensional Assessment and Planning for Hallux Valgus.

Forin Valvecchi T, Marcolli D, De Cesar Netto C

pubmed logopapersJun 1 2025
The article discusses advanced three-dimensional evaluation of hallux valgus deformity using weightbearing computed tomography. Conventional two-dimensional radiographs fall short in assessing the complexity of hallux valgus deformities, whereas weightbearing computed tomography provides detailed insights into bone alignment and joint stability in a weightbearing state. Recent studies have highlighted the significance of first ray hypermobility and intrinsic metatarsal rotation in hallux valgus, influencing surgical planning and outcomes. The integration of semiautomatic and artificial intelligence-assisted tools with weightbearing computed tomography is enhancing the precision of deformity assessment, leading to more personalized and effective hallux valgus management.

[Capabilities and Advances of Transrectal Ultrasound in 2025].

Kaufmann S, Kruck S

pubmed logopapersJun 1 2025
Transrectal ultrasound, particularly in the combination of high-frequency ultrasound and MR-TRUS fusion technologies, provides a highly precise and effective method for correlation and targeted biopsy of suspicious intraprostatic lesions detected by MRI. Advances in imaging technology, driven by 29 Mhz micro-ultrasound transducers, robotic-assisted systems, and the integration of AI-based analyses, promise further improvements in diagnostic accuracy and a reduction in unnecessary biopsies. Further technological advancements and improved TRUS training could contribute to a decentralized and cost-effective diagnostic evaluation of prostate cancer in the future.

ABCDEFGH: An Adaptation-Based Convolutional Neural Network-CycleGAN Disease-Courses Evolution Framework Using Generative Models in Health Education

Ruiming Min, Minghao Liu

arxiv logopreprintMay 31 2025
With the advancement of modern medicine and the development of technologies such as MRI, CT, and cellular analysis, it has become increasingly critical for clinicians to accurately interpret various diagnostic images. However, modern medical education often faces challenges due to limited access to high-quality teaching materials, stemming from privacy concerns and a shortage of educational resources (Balogh et al., 2015). In this context, image data generated by machine learning models, particularly generative models, presents a promising solution. These models can create diverse and comparable imaging datasets without compromising patient privacy, thereby supporting modern medical education. In this study, we explore the use of convolutional neural networks (CNNs) and CycleGAN (Zhu et al., 2017) for generating synthetic medical images. The source code is available at https://github.com/mliuby/COMP4211-Project.

A European Multi-Center Breast Cancer MRI Dataset

Gustav Müller-Franzes, Lorena Escudero Sánchez, Nicholas Payne, Alexandra Athanasiou, Michael Kalogeropoulos, Aitor Lopez, Alfredo Miguel Soro Busto, Julia Camps Herrero, Nika Rasoolzadeh, Tianyu Zhang, Ritse Mann, Debora Jutz, Maike Bode, Christiane Kuhl, Wouter Veldhuis, Oliver Lester Saldanha, JieFu Zhu, Jakob Nikolas Kather, Daniel Truhn, Fiona J. Gilbert

arxiv logopreprintMay 31 2025
Detecting breast cancer early is of the utmost importance to effectively treat the millions of women afflicted by breast cancer worldwide every year. Although mammography is the primary imaging modality for screening breast cancer, there is an increasing interest in adding magnetic resonance imaging (MRI) to screening programmes, particularly for women at high risk. Recent guidelines by the European Society of Breast Imaging (EUSOBI) recommended breast MRI as a supplemental screening tool for women with dense breast tissue. However, acquiring and reading MRI scans requires significantly more time from expert radiologists. This highlights the need to develop new automated methods to detect cancer accurately using MRI and Artificial Intelligence (AI), which have the potential to support radiologists in breast MRI interpretation and classification and help detect cancer earlier. For this reason, the ODELIA consortium has made this multi-centre dataset publicly available to assist in developing AI tools for the detection of breast cancer on MRI.
Page 16 of 21210 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.