Sort by:
Page 157 of 1591585 results

Multistage Diffusion Model With Phase Error Correction for Fast PET Imaging.

Gao Y, Huang Z, Xie X, Zhao W, Yang Q, Yang X, Yang Y, Zheng H, Liang D, Liu J, Chen R, Hu Z

pubmed logopapersMay 7 2025
Fast PET imaging is clinically important for reducing motion artifacts and improving patient comfort. While recent diffusion-based deep learning methods have shown promise, they often fail to capture the true PET degradation process, suffer from accumulated inference errors, introduce artifacts, and require extensive reconstruction iterations. To address these challenges, we propose a novel multistage diffusion framework tailored for fast PET imaging. At the coarse level, we design a multistage structure to approximate the temporal non-linear PET degradation process in a data-driven manner, using paired PET images collected under different acquisition duration. A Phase Error Correction Network (PECNet) ensures consistency across stages by correcting accumulated deviations. At the fine level, we introduce a deterministic cold diffusion mechanism, which simulates intra-stage degradation through interpolation between known acquisition durations-significantly reducing reconstruction iterations to as few as 10. Evaluations on [<sup>68</sup>Ga]FAPI and [<sup>18</sup>F]FDG PET datasets demonstrate the superiority of our approach, achieving peak PSNRs of 36.2 dB and 39.0 dB, respectively, with average SSIMs over 0.97. Our framework offers high-fidelity PET imaging with fewer iterations, making it practical for accelerated clinical imaging.

The added value of artificial intelligence using Quantib Prostate for the detection of prostate cancer at multiparametric magnetic resonance imaging.

Russo T, Quarta L, Pellegrino F, Cosenza M, Camisassa E, Lavalle S, Apostolo G, Zaurito P, Scuderi S, Barletta F, Marzorati C, Stabile A, Montorsi F, De Cobelli F, Brembilla G, Gandaglia G, Briganti A

pubmed logopapersMay 7 2025
Artificial intelligence (AI) has been proposed to assist radiologists in reporting multiparametric magnetic resonance imaging (mpMRI) of the prostate. We evaluate the diagnostic performance of radiologists with different levels of experience when reporting mpMRI with the support of available AI-based software (Quantib Prostate). This is a single-center study (NCT06298305) involving 110 patients. Those with a positive mpMRI (PI-RADS ≥ 3) underwent targeted plus systematic biopsy (TBx plus SBx), while those with a negative mpMRI but a high clinical suspicion of prostate cancer (PCa) underwent SBx. Three readers with different levels of experience, identified as R1, R2, and R3 reviewed all mpMRI. Inter-reader agreement among the three readers with or without the assistance of Quantib Prostate as well as sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy for the detection of clinically significant PCa (csPCa) were assessed. 102 patients underwent prostate biopsy and the csPCa detection rate was 47%. Using Quantib Prostate resulted in an increased number of lesions identified for R3 (101 vs. 127). Inter-reader agreement slightly increased when using Quantib Prostate from 0.37 to 0.41 without vs. with Quantib Prostate, respectively. PPV, NPV and diagnostic accuracy (measured by the area under the curve [AUC]) of R3 improved (0.51 vs. 0.55, 0.65 vs.0.82 and 0.56 vs. 0.62, respectively). Conversely, no changes were observed for R1 and R2. Using Quantib Prostate did not enhance the detection rate of csPCa for readers with some experience in prostate imaging. However, for an inexperienced reader, this AI-based software is demonstrated to improve the performance. Name of registry: clinicaltrials.gov. NCT06298305. Date of registration: 2022-09.

New Targets for Imaging in Nuclear Medicine.

Brink A, Paez D, Estrada Lobato E, Delgado Bolton RC, Knoll P, Korde A, Calapaquí Terán AK, Haidar M, Giammarile F

pubmed logopapersMay 6 2025
Nuclear medicine is rapidly evolving with new molecular imaging targets and advanced computational tools that promise to enhance diagnostic precision and personalized therapy. Recent years have seen a surge in novel PET and SPECT tracers, such as those targeting prostate-specific membrane antigen (PSMA) in prostate cancer, fibroblast activation protein (FAP) in tumor stroma, and tau protein in neurodegenerative disease. These tracers enable more specific visualization of disease processes compared to traditional agents, fitting into a broader shift toward precision imaging in oncology and neurology. In parallel, artificial intelligence (AI) and machine learning techniques are being integrated into tracer development and image analysis. AI-driven methods can accelerate radiopharmaceutical discovery, optimize pharmacokinetic properties, and assist in interpreting complex imaging datasets. This editorial provides an expanded overview of emerging imaging targets and techniques, including theranostic applications that pair diagnosis with radionuclide therapy, and examines how AI is augmenting nuclear medicine. We discuss the implications of these advancements within the field's historical trajectory and address the regulatory, manufacturing, and clinical challenges that must be navigated. Innovations in molecular targeting and AI are poised to transform nuclear medicine practice, enabling more personalized diagnostics and radiotheranostic strategies in the era of precision healthcare.

Designing a computer-assisted diagnosis system for cardiomegaly detection and radiology report generation.

Zhu T, Xu K, Son W, Linton-Reid K, Boubnovski-Martell M, Grech-Sollars M, Lain AD, Posma JM

pubmed logopapersMay 1 2025
Chest X-ray (CXR) is a diagnostic tool for cardiothoracic assessment. They make up 50% of all diagnostic imaging tests. With hundreds of images examined every day, radiologists can suffer from fatigue. This fatigue may reduce diagnostic accuracy and slow down report generation. We describe a prototype computer-assisted diagnosis (CAD) pipeline employing computer vision (CV) and Natural Language Processing (NLP). It was trained and evaluated on the publicly available MIMIC-CXR dataset. We perform image quality assessment, view labelling, and segmentation-based cardiomegaly severity classification. We use the output of the severity classification for large language model-based report generation. Four board-certified radiologists assessed the output accuracy of our CAD pipeline. Across the dataset composed of 377,100 CXR images and 227,827 free-text radiology reports, our system identified 0.18% of cases with mixed-sex mentions, 0.02% of poor quality images (F1 = 0.81), and 0.28% of wrongly labelled views (accuracy 99.4%). We assigned views for 4.18% of images which have unlabelled views. Our binary cardiomegaly classification model has 95.2% accuracy. The inter-radiologist agreement on evaluating the generated report's semantics and correctness for radiologist-MIMIC is 0.62 (strict agreement) and 0.85 (relaxed agreement) similar to the radiologist-CAD agreement of 0.55 (strict) and 0.93 (relaxed). Our work found and corrected several incorrect or missing metadata annotations for the MIMIC-CXR dataset. The performance of our CAD system suggests performance on par with human radiologists. Future improvements revolve around improved text generation and the development of CV tools for other diseases.

Radiomics of Dynamic Contrast-Enhanced MRI for Predicting Radiation-Induced Hepatic Toxicity After Intensity Modulated Radiotherapy for Hepatocellular Carcinoma: A Machine Learning Predictive Model Based on the SHAP Methodology.

Liu F, Chen L, Wu Q, Li L, Li J, Su T, Li J, Liang S, Qing L

pubmed logopapersJan 1 2025
To develop an interpretable machine learning (ML) model using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) radiomic data, dosimetric parameters, and clinical data for predicting radiation-induced hepatic toxicity (RIHT) in patients with hepatocellular carcinoma (HCC) following intensity-modulated radiation therapy (IMRT). A retrospective analysis of 150 HCC patients was performed, with a 7:3 ratio used to divide the data into training and validation cohorts. Radiomic features from the original MRI sequences and Delta-radiomic features were extracted. Seven ML models based on radiomics were developed: logistic regression (LR), random forest (RF), support vector machine (SVM), eXtreme Gradient Boosting (XGBoost), adaptive boosting (AdaBoost), decision tree (DT), and artificial neural network (ANN). The predictive performance of the models was evaluated using receiver operating characteristic (ROC) curve analysis and calibration curves. Shapley additive explanations (SHAP) were employed to interpret the contribution of each variable and its risk threshold. Original radiomic features and Delta-radiomic features were extracted from DCE-MRI images and filtered to generate Radiomics-scores and Delta-Radiomics-scores. These were then combined with independent risk factors (Body Mass Index (BMI), V5, and pre-Child-Pugh score(pre-CP)) identified through univariate and multivariate logistic regression and Spearman correlation analysis to construct the ML models. In the training cohort, the AUC values were 0.8651 for LR, 0.7004 for RF, 0.6349 for SVM, 0.6706 for XGBoost, 0.7341 for AdaBoost, 0.6806 for Decision Tree, and 0.6786 for ANN. The corresponding accuracies were 84.4%, 65.6%, 75.0%, 65.6%, 71.9%, 68.8%, and 71.9%, respectively. The validation cohort further confirmed the superiority of the LR model, which was selected as the optimal model. SHAP analysis revealed that Delta-radiomics made a substantial positive contribution to the model. The interpretable ML model based on radiomics provides a non-invasive tool for predicting RIHT in patients with HCC, demonstrating satisfactory discriminative performance.

Principles for Developing a Large-Scale Point-of-Care Ultrasound Education Program: Insights from a Tertiary University Medical Center in Israel.

Dayan RR, Karni O, Shitrit IB, Gaufberg R, Ilan K, Fuchs L

pubmed logopapersJan 1 2025
Point-of-care ultrasound (POCUS) has transformed bedside diagnostics, yet its operator-dependent nature and lack of structured training remain significant barriers. To address these challenges, Ben Gurion University (BGU) developed a longitudinal six-year POCUS curriculum, emphasizing early integration, competency-based training, and scalable educational strategies to enhance medical education and patient care. To implement a structured and scalable POCUS curriculum that progressively builds technical proficiency, clinical judgment, and diagnostic accuracy, ensuring medical students effectively integrate POCUS into clinical practice. The curriculum incorporates hands-on training, self-directed learning, a structured spiral approach, and peer-led instruction. Early exposure in physics and anatomy courses establishes a foundation, progressing to bedside applications in clinical years. Advanced technologies, including AI-driven feedback and telemedicine, enhance skill retention and address faculty shortages by providing scalable solutions for ongoing assessment and feedback. Since its implementation in 2014, the program has trained hundreds of students, with longitudinal proficiency data from over 700 students. Internal studies have demonstrated that self-directed learning modules match or exceed in-person instruction for ultrasound skill acquisition, AI-driven feedback enhances image acquisition, and early clinical integration of POCUS positively influences patient care. Preliminary findings suggest that telemedicine-based instructor feedback improves cardiac ultrasound proficiency over time, and AI-assisted probe manipulation and self-learning with ultrasound simulators may further optimize training without requiring in-person instruction. A structured longitudinal approach ensures progressive skill acquisition while addressing faculty shortages and training limitations. Cost-effective strategies, such as peer-led instruction, AI feedback, and telemedicine, support skill development and sustainability. Emphasizing clinical integration ensures students learn to use POCUS as a targeted diagnostic adjunct rather than a broad screening tool, reinforcing its role as an essential skill in modern medical education.

Volumetric atlas of the rat inner ear from microCT and iDISCO+ cleared temporal bones.

Cossellu D, Vivado E, Batti L, Gantar I, Pizzala R, Perin P

pubmed logopapersJan 1 2025
Volumetric atlases are an invaluable tool in neuroscience and otolaryngology, greatly aiding experiment planning and surgical interventions, as well as the interpretation of experimental and clinical data. The rat is a major animal model for hearing and balance studies, and a detailed volumetric atlas for the rat central auditory system (Waxholm) is available. However, the Waxholm rat atlas only contains a low-resolution inner ear featuring five structures. In the present work, we segmented and annotated 34 structures in the rat inner ear, yielding a detailed volumetric inner ear atlas which can be integrated with the Waxholm rat brain atlas. We performed iodine-enhanced microCT and iDISCO+-based clearing and fluorescence lightsheet microscopy imaging on a sample of rat temporal bones. Image stacks were segmented in a semiautomated way, and 34 inner ear volumes were reconstructed from five samples. Using geometrical morphometry, high-resolution segmentations obtained from lightsheet and microCT stacks were registered into the coordinate system of the Waxholm rat atlas. Cleared sample autofluorescence was used for the reconstruction of most inner ear structures, including fluid-filled compartments, nerves and sensory epithelia, blood vessels, and connective tissue structures. Image resolution allowed reconstruction of thin ducts (reuniting, saccular and endolymphatic), and the utriculoendolymphatic valve. The vestibulocochlear artery coursing through bone was found to be associated to the reuniting duct, and to be visible both in cleared and microCT samples, thus allowing to infer duct location from microCT scans. Cleared labyrinths showed minimal shape distortions, as shown by alignment with microCT and Waxholm labyrinths. However, membranous labyrinths could display variable collapse of the superior division, especially the roof of canal ampullae, whereas the inferior division (saccule and cochlea) was well preserved, with the exception of Reissner's membrane that could display ruptures in the second cochlear turn. As an example of atlas use, the volumes reconstructed from segmentations were used to separate macrophage populations from the spiral ganglion, auditory neuron dendrites, and Organ of Corti. We have reconstructed 34 structures from the rat temporal bone, which are available as both image stacks and printable 3D objects in a shared repository for download. These can be used for teaching, localizing cells or other features within the ear, modeling auditory and vestibular sensory physiology and training of automated segmentation machine learning tools.

Application research of artificial intelligence software in the analysis of thyroid nodule ultrasound image characteristics.

Xu C, Wang Z, Zhou J, Hu F, Wang Y, Xu Z, Cai Y

pubmed logopapersJan 1 2025
Thyroid nodule, as a common clinical endocrine disease, has become increasingly prevalent worldwide. Ultrasound, as the premier method of thyroid imaging, plays an important role in accurately diagnosing and managing thyroid nodules. However, there is a high degree of inter- and intra-observer variability in image interpretation due to the different knowledge and experience of sonographers who have huge ultrasound examination tasks everyday. Artificial intelligence based on computer-aided diagnosis technology maybe improve the accuracy and time efficiency of thyroid nodules diagnosis. This study introduced an artificial intelligence software called SW-TH01/II to evaluate ultrasound image characteristics of thyroid nodules including echogenicity, shape, border, margin, and calcification. We included 225 ultrasound images from two hospitals in Shanghai, respectively. The sonographers and software performed characteristics analysis on the same group of images. We analyzed the consistency of the two results and used the sonographers' results as the gold standard to evaluate the accuracy of SW-TH01/II. A total of 449 images were included in the statistical analysis. For the seven indicators, the proportions of agreement between SW-TH01/II and sonographers' analysis results were all greater than 0.8. For the echogenicity (with very hypoechoic), aspect ratio and margin, the kappa coefficient between the two methods were above 0.75 (P < 0.001). The kappa coefficients of echogenicity (echotexture and echogenicity level), border and calcification between the two methods were above 0.6 (P < 0.001). The median time it takes for software and sonographers to interpret an image were 3 (2, 3) seconds and 26.5 (21.17, 34.33) seconds, respectively, and the difference were statistically significant (z = -18.36, P < 0.001). SW-TH01/II has a high degree of accuracy and great time efficiency benefits in judging the characteristics of thyroid nodule. It can provide more objective results and improve the efficiency of ultrasound examination. SW-TH01/II can be used to assist the sonographers in characterizing the thyroid nodule ultrasound images.

Intelligent and precise auxiliary diagnosis of breast tumors using deep learning and radiomics.

Wang T, Zang B, Kong C, Li Y, Yang X, Yu Y

pubmed logopapersJan 1 2025
Breast cancer is the most common malignant tumor among women worldwide, and early diagnosis is crucial for reducing mortality rates. Traditional diagnostic methods have significant limitations in terms of accuracy and consistency. Imaging is a common technique for diagnosing and predicting breast cancer, but human error remains a concern. Increasingly, artificial intelligence (AI) is being employed to assist physicians in reducing diagnostic errors. We developed an intelligent diagnostic model combining deep learning and radiomics to enhance breast tumor diagnosis. The model integrates MobileNet with ResNeXt-inspired depthwise separable and grouped convolutions, improving feature processing and efficiency while reducing parameters. Using AI-Dhabyani and TCIA breast ultrasound datasets, we validated the model internally and externally, comparing it to VGG16, ResNet, AlexNet, and MobileNet. Results: The internal validation set achieved an accuracy of 83.84% with an AUC of 0.92, outperforming other models. The external validation set showed an accuracy of 69.44% with an AUC of 0.75, demonstrating high robustness and generalizability. Conclusions: We developed an intelligent diagnostic model using deep learning and radiomics to improve breast tumor diagnosis. The model combines MobileNet with ResNeXt-inspired depthwise separable and grouped convolutions, enhancing feature processing and efficiency while reducing parameters. It was validated internally and externally using the AI-Dhabyani and TCIA breast ultrasound datasets and compared with VGG16, ResNet, AlexNet, and MobileNet.

Ground-truth-free deep learning approach for accelerated quantitative parameter mapping with memory efficient learning.

Fujita N, Yokosawa S, Shirai T, Terada Y

pubmed logopapersJan 1 2025
Quantitative MRI (qMRI) requires the acquisition of multiple images with parameter changes, resulting in longer measurement times than conventional imaging. Deep learning (DL) for image reconstruction has shown a significant reduction in acquisition time and improved image quality. In qMRI, where the image contrast varies between sequences, preparing large, fully-sampled (FS) datasets is challenging. Recently, methods that do not require FS data such as self-supervised learning (SSL) and zero-shot self-supervised learning (ZSSSL) have been proposed. Another challenge is the large GPU memory requirement for DL-based qMRI image reconstruction, owing to the simultaneous processing of multiple contrast images. In this context, Kellman et al. proposed memory-efficient learning (MEL) to save the GPU memory. This study evaluated SSL and ZSSSL frameworks with MEL to accelerate qMRI. Three experiments were conducted using the following sequences: 2D T2 mapping/MSME (Experiment 1), 3D T1 mapping/VFA-SPGR (Experiment 2), and 3D T2 mapping/DESS (Experiment 3). Each experiment used the undersampled k-space data under acceleration factors of 4, 8, and 12. The reconstructed maps were evaluated using quantitative metrics. In this study, we performed three qMRI reconstruction measurements and compared the performance of the SL- and GT-free learning methods, SSL and ZSSSL. Overall, the performances of SSL and ZSSSL were only slightly inferior to those of SL, even under high AF conditions. The quantitative errors in diagnostically important tissues (WM, GM, and meniscus) were small, demonstrating that SL and ZSSSL performed comparably. Additionally, by incorporating a GPU memory-saving implementation, we demonstrated that the network can operate on a GPU with a small memory (<8GB) with minimal speed reduction. This study demonstrates the effectiveness of memory-efficient GT-free learning methods using MEL to accelerate qMRI.
Page 157 of 1591585 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.