Sort by:
Page 118 of 1401394 results

Diagnosis of thyroid cartilage invasion by laryngeal and hypopharyngeal cancers based on CT with deep learning.

Takano Y, Fujima N, Nakagawa J, Dobashi H, Shimizu Y, Kanaya M, Kano S, Homma A, Kudo K

pubmed logopapersMay 13 2025
To develop a convolutional neural network (CNN) model to diagnose thyroid cartilage invasion by laryngeal and hypopharyngeal cancers observed on computed tomography (CT) images and evaluate the model's diagnostic performance. We retrospectively analyzed 91 cases of laryngeal or hypopharyngeal cancer treated surgically at our hospital during the period April 2010 through May 2023, and we divided the cases into datasets for training (n = 61) and testing (n = 30). We reviewed the CT images and pathological diagnoses in all cases to determine the invasion positive- or negative-status as a ground truth. We trained the new CNN model to classify thyroid cartilage invasion-positive or -negative status from the pre-treatment axial CT images by transfer learning from Residual Network 101 (ResNet101), using the training dataset. We then used the test dataset to evaluate the model's performance. Two radiologists, one with extensive head and neck imaging experience (senior reader) and the other with less experience (junior reader) reviewed the CT images of the test dataset to determine whether thyroid cartilage invasion was present. The following were obtained by the CNN model with the test dataset: area under the curve (AUC), 0.82; 90 % accuracy, 80 % sensitivity, and 95 % specificity. The CNN model showed a significant difference in AUCs compared to the junior reader (p = 0.035) but not the senior reader (p = 0.61). The CNN-based diagnostic model can be a useful supportive tool for the assessment of thyroid cartilage invasion in patients with laryngeal or hypopharyngeal cancer.

A survey of deep-learning-based radiology report generation using multimodal inputs.

Wang X, Figueredo G, Li R, Zhang WE, Chen W, Chen X

pubmed logopapersMay 13 2025
Automatic radiology report generation can alleviate the workload for physicians and minimize regional disparities in medical resources, therefore becoming an important topic in the medical image analysis field. It is a challenging task, as the computational model needs to mimic physicians to obtain information from multi-modal input data (i.e., medical images, clinical information, medical knowledge, etc.), and produce comprehensive and accurate reports. Recently, numerous works have emerged to address this issue using deep-learning-based methods, such as transformers, contrastive learning, and knowledge-base construction. This survey summarizes the key techniques developed in the most recent works and proposes a general workflow for deep-learning-based report generation with five main components, including multi-modality data acquisition, data preparation, feature learning, feature fusion and interaction, and report generation. The state-of-the-art methods for each of these components are highlighted. Additionally, we summarize the latest developments in large model-based methods and model explainability, along with public datasets, evaluation methods, current challenges, and future directions in this field. We have also conducted a quantitative comparison between different methods in the same experimental setting. This is the most up-to-date survey that focuses on multi-modality inputs and data fusion for radiology report generation. The aim is to provide comprehensive and rich information for researchers interested in automatic clinical report generation and medical image analysis, especially when using multimodal inputs, and to assist them in developing new algorithms to advance the field.

Enhancing Liver Fibrosis Measurement: Deep Learning and Uncertainty Analysis Across Multi-Centre Cohorts

Wojciechowska, M. K., Malacrino, S., Windell, D., Culver, E., Dyson, J., UK-AIH Consortium,, Rittscher, J.

medrxiv logopreprintMay 13 2025
O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=111 SRC="FIGDIR/small/25326981v1_ufig1.gif" ALT="Figure 1"> View larger version (31K): [email protected]@14e7b87org.highwire.dtl.DTLVardef@19005c4org.highwire.dtl.DTLVardef@6ac42f_HPS_FORMAT_FIGEXP M_FIG O_FLOATNOGraphical AbstractC_FLOATNO C_FIG HighlightsO_LIA retrospective cohort of liver biopsies collected from over 20 healthcare centres has been assembled. C_LIO_LIThe cohort is characterized on the basis of collagen staining used for liver fibrosis assessment. C_LIO_LIA computational pipeline for the quantification of collagen from liver histology slides has been developed and applied to the described cohorts. C_LIO_LIUncertainty estimation is evaluated as a method to build trust in deep-learning based collagen predictions. C_LI The introduction of digital pathology has revolutionised the way in which histology-based measurements can support large, multi-centre studies. How-ever, pooling data from various centres often reveals significant differences in specimen quality, particularly regarding histological staining protocols. These variations present challenges in reliably quantifying features from stained tissue sections using image analysis. In this study, we investigate the statistical variation of measuring fibrosis across a liver cohort composed of four individual studies from 20 clinical sites across Europe and North America. In a first step, we apply colour consistency measurements to analyse staining variability across this diverse cohort. Subsequently, a learnt segmentation model is used to quantify the collagen proportionate area (CPA) and employed uncertainty mapping to evaluate the quality of the segmentations. Our analysis highlights a lack of standardisation in PicroSirius Red (PSR) staining practices, revealing significant variability in staining protocols across institutions. The deconvolution of the staining of the digitised slides identified the different numbers and types of counterstains used, leading to potentially incomparable results. Our analysis highlights the need for standardised staining protocols to ensure reliable collagen quantification in liver biopsies. The tools and methodologies presented here can be applied to perform slide colour quality control in digital pathology studies, thus enhancing the comparability and reproducibility of fibrosis assessment in the liver and other tissues.

Deep learning diagnosis of hepatic echinococcosis based on dual-modality plain CT and ultrasound images: a large-scale, multicenter, diagnostic study.

Zhang J, Zhang J, Tang H, Meng Y, Chen X, Chen J, Chen Y

pubmed logopapersMay 12 2025
Given the current limited accuracy of imaging screening for Hepatic Echinococcosis (HCE) in under-resourced areas, the authors developed and validated a Multimodal Imaging system (HEAC) based on plain Computed Tomography (CT) combined with ultrasound for HCE screening in those areas. In this study, we developed a multimodal deep learning diagnostic system by integrating ultrasound and plain CT imaging data to differentiate hepatic echinococcosis, liver cysts, liver abscesses, and healthy liver conditions. We collected a dataset of 8979 cases spanning 18 years from eight hospitals in Xinjiang China, including both retrospective and prospective data. To enhance the robustness and generalization of the diagnostic model, after modeling CT and ultrasound images using EfficientNet3D and EfficientNet-B0, external and prospective tests were conducted, and the model's performance was compared with diagnoses made by experienced physicians. Across internal and external test sets, the fused model of CT and ultrasound consistently outperformed the individual modality models and physician diagnoses. In the prospective test set from the same center, the fusion model achieved an accuracy of 0.816, sensitivity of 0.849, specificity of 0.942, and an AUC of 0.963, significantly exceeding physician performance (accuracy 0.900, sensitivity 0.800, specificity 0.933). The external test sets across seven other centers demonstrated similar results, with the fusion model achieving an overall accuracy of 0.849, sensitivity of 0.859, specificity of 0.942, and AUC of 0.961. The multimodal deep learning diagnostic system that integrates CT and ultrasound significantly increases the diagnosis accuracy of HCE, liver cysts, and liver abscesses. It beats standard single-modal approaches and physician diagnoses by lowering misdiagnosis rates and increasing diagnostic reliability. It emphasizes the promise of multimodal imaging systems in tackling diagnostic issues in low-resource areas, opening the path for improved medical care accessibility and outcomes.

Prognostic Value Of Deep Learning Based RCA PCAT and Plaque Volume Beyond CT-FFR In Patients With Stent Implantation.

Huang Z, Tang R, Du X, Ding Y, Yang Z, Cao B, Li M, Wang X, Wang W, Li Z, Xiao J, Wang X

pubmed logopapersMay 12 2025
The study aims to investigate the prognostic value of deep learning based pericoronary adipose tissue attenuation computed tomography (PCAT) and plaque volume beyond coronary computed tomography angiography (CTA) -derived fractional flow reserve (CT-FFR) in patients with percutaneous coronary intervention (PCI). A total of 183 patients with PCI who underwent coronary CTA were included in this retrospective study. Imaging assessment included PCAT, plaque volume, and CT-FFR, which were performed using an artificial intelligence (AI) assisted workstation. Kaplan-Meier survival curves analysis and multivariate Cox regression were used to estimate major adverse cardiovascular events (MACE), including non-fatal myocardial infraction (MI), stroke, and mortality. In total, 22 (12%) MACE occurred during a median follow-up period of 38.0 months (34.6-54.6 months). Kaplan-Meier analysis revealed that right coronary artery (RCA) PCAT (p = 0.007) and plaque volume (p = 0.008) were significantly associated with the increase in MACE. Multivariable Cox regression indicated that RCA PCAT (hazard ratios (HR): 2.94, 95%CI: 1.15-7.50, p = 0.025) and plaque volume (HR: 3.91, 95%CI: 1.20-12.75, p = 0.024) were independent predictors of MACE after adjustment by clinical risk factors. However, CT-FFR was not independently associated with MACE in multivariable Cox regression (p = 0.271). Deep learning based RCA PCAT and plaque volume derived from coronary CTA were found to be more strongly associated with MACE than CTFFR in patients with PCI.

JSover: Joint Spectrum Estimation and Multi-Material Decomposition from Single-Energy CT Projections

Qing Wu, Hongjiang Wei, Jingyi Yu, S. Kevin Zhou, Yuyao Zhang

arxiv logopreprintMay 12 2025
Multi-material decomposition (MMD) enables quantitative reconstruction of tissue compositions in the human body, supporting a wide range of clinical applications. However, traditional MMD typically requires spectral CT scanners and pre-measured X-ray energy spectra, significantly limiting clinical applicability. To this end, various methods have been developed to perform MMD using conventional (i.e., single-energy, SE) CT systems, commonly referred to as SEMMD. Despite promising progress, most SEMMD methods follow a two-step image decomposition pipeline, which first reconstructs monochromatic CT images using algorithms such as FBP, and then performs decomposition on these images. The initial reconstruction step, however, neglects the energy-dependent attenuation of human tissues, introducing severe nonlinear beam hardening artifacts and noise into the subsequent decomposition. This paper proposes JSover, a fundamentally reformulated one-step SEMMD framework that jointly reconstructs multi-material compositions and estimates the energy spectrum directly from SECT projections. By explicitly incorporating physics-informed spectral priors into the SEMMD process, JSover accurately simulates a virtual spectral CT system from SE acquisitions, thereby improving the reliability and accuracy of decomposition. Furthermore, we introduce implicit neural representation (INR) as an unsupervised deep learning solver for representing the underlying material maps. The inductive bias of INR toward continuous image patterns constrains the solution space and further enhances estimation quality. Extensive experiments on both simulated and real CT datasets show that JSover outperforms state-of-the-art SEMMD methods in accuracy and computational efficiency.

[Pulmonary vascular interventions: innovating through adaptation and advancing through differentiation].

Li J, Wan J

pubmed logopapersMay 12 2025
Pulmonary vascular intervention technology, with its minimally invasive and precise advantages, has been a groundbreaking advancement in the treatment of pulmonary vascular diseases. Techniques such as balloon pulmonary angioplasty (BPA), pulmonary artery stenting, and percutaneous pulmonary artery denervation (PADN) have significantly improved the prognoses for conditions such as chronic thromboembolic pulmonary hypertension (CTEPH), pulmonary artery stenosis, and pulmonary arterial hypertension (PAH). Although based on coronary intervention (PCI) techniques such as guidewire manipulation and balloon dilatation, pulmonary vascular interventions require specific modifications to address the unique characteristics of the pulmonary circulation, low pressure, thin-walled vessels, and complex branching, to mitigate risks of perforation and thrombosis. Future directions include the development of dedicated instruments, multi-modality imaging guidance, artificial intelligence-assisted procedures, and molecular interventional therapies. These innovations aim to establish an independent theoretical framework for pulmonary vascular interventions, facilitating their transition from "adjuvant therapies" to "core treatments" in clinical practice.

Evaluating the reference accuracy of large language models in radiology: a comparative study across subspecialties.

Güneş YC, Cesur T, Çamur E

pubmed logopapersMay 12 2025
This study aimed to compare six large language models (LLMs) [Chat Generative Pre-trained Transformer (ChatGPT)o1-preview, ChatGPT-4o, ChatGPT-4o with canvas, Google Gemini 1.5 Pro, Claude 3.5 Sonnet, and Claude 3 Opus] in generating radiology references, assessing accuracy, fabrication, and bibliographic completeness. In this cross-sectional observational study, 120 open-ended questions were administered across eight radiology subspecialties (neuroradiology, abdominal, musculoskeletal, thoracic, pediatric, cardiac, head and neck, and interventional radiology), with 15 questions per subspecialty. Each question prompted the LLMs to provide responses containing four references with in-text citations and complete bibliographic details (authors, title, journal, publication year/month, volume, issue, page numbers, and PubMed Identifier). References were verified using Medline, Google Scholar, the Directory of Open Access Journals, and web searches. Each bibliographic element was scored for correctness, and a composite final score [(FS): 0-36] was calculated by summing the correct elements and multiplying this by a 5-point verification score for content relevance. The FS values were then categorized into a 5-point Likert scale reference accuracy score (RAS: 0 = fabricated; 4 = fully accurate). Non-parametric tests (Kruskal-Wallis, Tamhane's T2, Wilcoxon signed-rank test with Bonferroni correction) were used for statistical comparisons. Claude 3.5 Sonnet demonstrated the highest reference accuracy, with 80.8% fully accurate references (RAS 4) and a fabrication rate of 3.1%, significantly outperforming all other models (<i>P</i> < 0.001). Claude 3 Opus ranked second, achieving 59.6% fully accurate references and a fabrication rate of 18.3% (<i>P</i> < 0.001). ChatGPT-based models (ChatGPT-4o, ChatGPT-4o with canvas, and ChatGPT o1-preview) exhibited moderate accuracy, with fabrication rates ranging from 27.7% to 52.9% and <8% fully accurate references. Google Gemini 1.5 Pro had the lowest performance, achieving only 2.7% fully accurate references and the highest fabrication rate of 60.6% (<i>P</i> < 0.001). Reference accuracy also varied by subspecialty, with neuroradiology and cardiac radiology outperforming pediatric and head and neck radiology. Claude 3.5 Sonnet significantly outperformed all other models in generating verifiable radiology references, and Claude 3 Opus showed moderate performance. In contrast, ChatGPT models and Google Gemini 1.5 Pro delivered substantially lower accuracy with higher rates of fabricated references, highlighting current limitations in automated academic citation generation. The high accuracy of Claude 3.5 Sonnet can improve radiology literature reviews, research, and education with dependable references. The poor performance of other models, with high fabrication rates, risks misinformation in clinical and academic settings and highlights the need for refinement to ensure safe and effective use.

AutoFRS: an externally validated, annotation-free approach to computational preoperative complication risk stratification in pancreatic surgery - an experimental study.

Kolbinger FR, Bhasker N, Schön F, Cser D, Zwanenburg A, Löck S, Hempel S, Schulze A, Skorobohach N, Schmeiser HM, Klotz R, Hoffmann RT, Probst P, Müller B, Bodenstedt S, Wagner M, Weitz J, Kühn JP, Distler M, Speidel S

pubmed logopapersMay 12 2025
The risk of postoperative pancreatic fistula (POPF), one of the most dreaded complications after pancreatic surgery, can be predicted from preoperative imaging and tabular clinical routine data. However, existing studies suffer from limited clinical applicability due to a need for manual data annotation and a lack of external validation. We propose AutoFRS (automated fistula risk score software), an externally validated end-to-end prediction tool for POPF risk stratification based on multimodal preoperative data. We trained AutoFRS on preoperative contrast-enhanced computed tomography imaging and clinical data from 108 patients undergoing pancreatic head resection and validated it on an external cohort of 61 patients. Prediction performance was assessed using the area under the receiver operating characteristic curve (AUC) and balanced accuracy. In addition, model performance was compared to the updated alternative fistula risk score (ua-FRS), the current clinical gold standard method for intraoperative POPF risk stratification. AutoFRS achieved an AUC of 0.81 and a balanced accuracy of 0.72 in internal validation and an AUC of 0.79 and a balanced accuracy of 0.70 in external validation. In a patient subset with documented intraoperative POPF risk factors, AutoFRS (AUC: 0.84 ± 0.05) performed on par with the uaFRS (AUC: 0.85 ± 0.06). The AutoFRS web application facilitates annotation-free prediction of POPF from preoperative imaging and clinical data based on the AutoFRS prediction model. POPF can be predicted from multimodal clinical routine data without human data annotation, automating the risk prediction process. We provide additional evidence of the clinical feasibility of preoperative POPF risk stratification and introduce a software pipeline for future prospective evaluation.

Real-world Evaluation of Computer-aided Pulmonary Nodule Detection Software Sensitivity and False Positive Rate.

El Alam R, Jhala K, Hammer MM

pubmed logopapersMay 12 2025
Evaluate the false positive rate (FPR) of nodule detection software in real-world use. A total of 250 nonenhanced chest computed tomography (CT) examinations were randomly selected from an academic institution and submitted to the ClearRead nodule detection system (Riverain Technologies). Detected findings were reviewed by a thoracic imaging fellow. Nodules were classified as true nodules, lymph nodes, or other findings (branching opacity, vessel, mucus plug, etc.), and FPR was recorded. FPR was compared with the initial published FPR in the literature. True diagnosis was based on pathology or follow-up stability. For cases with malignant nodules, we recorded whether malignancy was detected by clinical radiology report (which was performed without software assistance) and/or ClearRead. Twenty-one CTs were excluded due to a lack of thin-slice images, and 229 CTs were included. A total of 594 findings were reported by ClearRead, of which 362 (61%) were true nodules and 232 (39%) were other findings. Of the true nodules, 297 were solid nodules, of which 79 (27%) were intrapulmonary lymph nodes. The mean findings identified by ClearRead per scan was 2.59. ClearRead mean FPR was 1.36, greater than the published rate of 0.58 (P<0.0001). If we consider true lung nodules <6 mm as false positive, FPR is 2.19. A malignant nodule was present in 30 scans; ClearRead identified it in 26 (87%), and the clinical report identified it in 28 (93%) (P=0.32). In real-world use, ClearRead had a much higher FPR than initially reported but a similar sensitivity for malignant nodule detection compared with unassisted radiologists.
Page 118 of 1401394 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.