Back to all papers

Revealing Shared Tumor Microenvironment Dynamics Related to Microsatellite Instability Across Different Cancers Using Cellular Social Network Analysis

Authors

Zamanitajeddin, N.,Jahanifar, M.,Eastwood, M.,Gunesli, G.,Arends, M. J.,Rajpoot, N.

Affiliations (1)

  • University of Warwick

Abstract

Microsatellite instability (MSI) is a key biomarker for immunotherapy response and prognosis across multiple cancers, yet its identification from routine Hematoxylin and Eosin (H&E) slides remains challenging. Current deep learning predictors often operate as black-box, weakly supervised models trained on individual slides, limiting interpretability, biological insight, and generalization; particularly in low-data regimes. Importantly, systematic quantitative analysis of shared MSI-associated characteristics across different cancer types has not been performed, representing a major gap in understanding conserved tumor microenvironment (TME) patterns linked to MSI. Here, we present a multi-cancer MSI prediction model that leverages pathology foundation models for robust feature extraction and cell-level social network analysis (SNA) to uncover TME patterns associated with MSI. For the MSI prediction task, we introduce a novel transformer-based embedding aggregation method, leveraging attention-guided, multi-case batch training to improve learning efficiency, stability, and interpretability. Our method achieves high predictive performance, with mean AUROCs of 0.86{+/-}0.06 (colorectal cancer), 0.89{+/-}0.06 (stomach adenocarcinoma), and 0.73{+/-}0.06 (uterine corpus endometrial carcinoma) in internal cross-validation on TCGA dataset and AUROC of 0.99 on external PAIP dataset, outperforming state-of-the-art weakly supervised methods (particularly in AUPRC with an average of 0.65 across three cancers). Multi-cancer training further improved generalization (by 3%) via exposing the model to diverse MSI manifestations, enabling robust learning of transferable, domain-invariant histological patterns. To investigate the TME, we constructed cell graphs from high-attention regions, classifying cells as epithelial, inflammatory, mitotic, or connective, and applied SNA metrics to quantify spatial interactions. Across cancers, MSI tumors exhibited increased epithelial cell density and stronger epithelial-inflammatory connectivity, with subtle, context-dependent changes in stromal organization. These features were consistent across univariate and multivariate analyses and supported by expert pathologist review, suggesting the presence of a conserved MSI-associated microenvironmental phenotype. Our proposed prediction algorithm and SNA-driven interpretation advance MSI prediction and uncover interpretable, biologically meaningful MSI signatures shared across colorectal, gastric, and endometrial cancers.

Topics

pathology

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.