Sort by:
Page 11 of 25249 results

A Machine Learning Model for Predicting the HER2 Positive Expression of Breast Cancer Based on Clinicopathological and Imaging Features.

Qin X, Yang W, Zhou X, Yang Y, Zhang N

pubmed logopapersJul 1 2025
To develop a machine learning (ML) model based on clinicopathological and imaging features to predict the Human Epidermal Growth Factor Receptor 2 (HER2) positive expression (HER2-p) of breast cancer (BC), and to compare its performance with that of a logistic regression (LR) model. A total of 2541 consecutive female patients with pathologically confirmed primary breast lesions were enrolled in this study. Based on chronological order, 2034 patients treated between January 2018 and December 2022 were designated as the retrospective development cohort, while 507 patients treated between January 2023 and May 2024 were designated as the prospective validation cohort. The patients were randomly divided into a train cohort (n=1628) and a test cohort (n=406) in an 8:2 ratio within the development cohort. Pretreatment mammography (MG) and breast MRI data, along with clinicopathological features, were recorded. Extreme Gradient Boosting (XGBoost) in combination with Artificial Neural Network (ANN) and multivariate LR analyses were employed to extract features associated with HER2 positivity in BC and to develop an ANN model (using XGBoost features) and an LR model, respectively. The predictive value was assessed using a receiver operating characteristic (ROC) curve. Following the application of Recursive Feature Elimination with Cross-Validation (RFE-CV) for feature dimensionality reduction, the XGBoost algorithm identified tumor size, suspicious calcifications, Ki-67 index, spiculation, and minimum apparent diffusion coefficient (minimum ADC) as key feature subsets indicative of HER2-p in BC. The constructed ANN model consistently outperformed the LR model, achieving the area under the curve (AUC) of 0.853 (95% CI: 0.837-0.872) in the train cohort, 0.821 (95% CI: 0.798-0.853) in the test cohort, and 0.809 (95% CI: 0.776-0.841) in the validation cohort. The ANN model, built using the significant feature subsets identified by the XGBoost algorithm with RFE-CV, demonstrates potential in predicting HER2-p in BC.

Feasibility/clinical utility of half-Fourier single-shot turbo spin echo imaging combined with deep learning reconstruction in gynecologic magnetic resonance imaging.

Kirita M, Himoto Y, Kurata Y, Kido A, Fujimoto K, Abe H, Matsumoto Y, Harada K, Morita S, Yamaguchi K, Nickel D, Mandai M, Nakamoto Y

pubmed logopapersJul 1 2025
When antispasmodics are unavailable, the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER; called BLADE by Siemens Healthineers) or half Fourier single-shot turbo spin echo (HASTE) is clinically used in gynecologic MRI. However, their imaging qualities are limited compared to Turbo Spin Echo (TSE) with antispasmodics. Even with antispasmodics, TSE can be artifact-affected, necessitating a rapid backup sequence. This study aimed to investigate the utility of HASTE with deep learning reconstruction and variable flip angle evolution (iHASTE) compared to conventional sequences with and without antispasmodics. This retrospective study included MRI scans without antispasmodics for 79 patients who underwent iHASTE, HASTE, and BLADE and MRI scans with antispasmodics for 79 case-control matched patients who underwent TSE. Three radiologists qualitatively evaluated image quality, robustness to artifacts, tissue contrast, and uterine lesion margins. Tissue contrast was also quantitatively evaluated. Quantitative evaluations revealed that iHASTE exhibited significantly superior tissue contrast to HASTE and BLADE. Qualitative evaluations indicated that iHASTE outperformed HASTE in overall quality. Two of three radiologists judged iHASTE to be significantly superior to BLADE, while two of three judged TSE to be significantly superior to iHASTE. iHASTE demonstrated greater robustness to artifacts than both BLADE and TSE. Lesion margins in iHASTE had lower scores than BLADE and TSE. iHASTE is a viable clinical option in patients undergoing gynecologic MRI with anti-spasmodics. iHASTE may also be considered as a useful add-on sequence in patients undergoing MRI with antispasmodics.

An AI-based tool for prosthetic crown segmentation serving automated intraoral scan-to-CBCT registration in challenging high artifact scenarios.

Elgarba BM, Ali S, Fontenele RC, Meeus J, Jacobs R

pubmed logopapersJul 1 2025
Accurately registering intraoral and cone beam computed tomography (CBCT) scans in patients with metal artifacts poses a significant challenge. Whether a cloud-based platform trained for artificial intelligence (AI)-driven segmentation can improve registration is unclear. The purpose of this clinical study was to validate a cloud-based platform trained for the AI-driven segmentation of prosthetic crowns on CBCT scans and subsequent multimodal intraoral scan-to-CBCT registration in the presence of high metal artifact expression. A dataset consisting of 30 time-matched maxillary and mandibular CBCT and intraoral scans, each containing at least 4 prosthetic crowns, was collected. CBCT acquisition involved placing cotton rolls between the cheeks and teeth to facilitate soft tissue delineation. Segmentation and registration were compared using either a semi-automated (SA) method or an AI-automated (AA). SA served as clinical reference, where prosthetic crowns and their radicular parts (natural roots or implants) were threshold-based segmented with point surface-based registration. The AA method included fully automated segmentation and registration based on AI algorithms. Quantitative assessment compared AA's median surface deviation (MSD) and root mean square (RMS) in crown segmentation and subsequent intraoral scan-to-CBCT registration with those of SA. Additionally, segmented crown STL files were voxel-wise analyzed for comparison between AA and SA. A qualitative assessment of AA-based crown segmentation evaluated the need for refinement, while the AA-based registration assessment scrutinized the alignment of the registered-intraoral scan with the CBCT teeth and soft tissue contours. Ultimately, the study compared the time efficiency and consistency of both methods. Quantitative outcomes were analyzed with the Kruskal-Wallis, Mann-Whitney, and Student t tests, and qualitative outcomes with the Wilcoxon test (all α=.05). Consistency was evaluated by using the intraclass correlation coefficient (ICC). Quantitatively, AA methods excelled with a 0.91 Dice Similarity Coefficient for crown segmentation and an MSD of 0.03 ±0.05 mm for intraoral scan-to-CBCT registration. Additionally, AA achieved 91% clinically acceptable matches of teeth and gingiva on CBCT scans, surpassing SA method's 80%. Furthermore, AA was significantly faster than SA (P<.05), being 200 times faster in segmentation and 4.5 times faster in registration. Both AA and SA exhibited excellent consistency in segmentation and registration, with ICC values of 0.99 and 1 for AA and 0.99 and 0.96 for SA, respectively. The novel cloud-based platform demonstrated accurate, consistent, and time-efficient prosthetic crown segmentation, as well as intraoral scan-to-CBCT registration in scenarios with high artifact expression.

Implementing an AI algorithm in the clinical setting: a case study for the accuracy paradox.

Scaringi JA, McTaggart RA, Alvin MD, Atalay M, Bernstein MH, Jayaraman MV, Jindal G, Movson JS, Swenson DW, Baird GL

pubmed logopapersJul 1 2025
We report our experience implementing an algorithm for the detection of large vessel occlusion (LVO) for suspected stroke in the emergency setting, including its performance, and offer an explanation as to why it was poorly received by radiologists. An algorithm was deployed in the emergency room at a single tertiary care hospital for the detection of LVO on CT angiography (CTA) between September 1st-27th, 2021. A retrospective analysis of the algorithm's accuracy was performed. During the study period, 48 patients underwent CTA examination in the emergency department to evaluate for emergent LVO, with 2 positive cases (60.3 years ± 18.2; 32 women). The LVO algorithm demonstrated a sensitivity and specificity of 100% and 92%, respectively. While the sensitivity of the algorithm at our institution was even higher than the manufacturer's reported values, the false discovery rate was 67%, leading to the perception that the algorithm was inaccurate. In addition, the positive predictive value at our institution was 33% compared with the manufacturer's reported values of 95-98%. This disparity can be attributed to differences in disease prevalence of 4.1% at our institution compared with 45.0-62.2% from the manufacturer's reported values. Despite the LVO algorithm's accuracy performing as advertised, it was perceived as inaccurate due to more false positives than anticipated and was removed from clinical practice. This was likely due to a cognitive bias called the accuracy paradox. To mitigate the accuracy paradox, radiologists should be presented with metrics based on a disease prevalence similar to their practice when evaluating and utilizing artificial intelligence tools. Question An artificial intelligence algorithm for detecting emergent LVOs was implemented in an emergency department, but it was perceived to be inaccurate. Findings Although the algorithm's accuracy was both high and as advertised, the algorithm demonstrated a high false discovery rate. Clinical relevance The misperception of the algorithm's inaccuracy was likely due to a special case of the base rate fallacy-the accuracy paradox. Equipping radiologists with an algorithm's false discovery rate based on local prevalence will ensure realistic expectations for real-world performance.

Automated vs manual cardiac MRI planning: a single-center prospective evaluation of reliability and scan times.

Glessgen C, Crowe LA, Wetzl J, Schmidt M, Yoon SS, Vallée JP, Deux JF

pubmed logopapersJul 1 2025
Evaluating the impact of an AI-based automated cardiac MRI (CMR) planning software on procedure errors and scan times compared to manual planning alone. Consecutive patients undergoing non-stress CMR were prospectively enrolled at a single center (August 2023-February 2024) and randomized into manual, or automated scan execution using prototype software. Patients with pacemakers, targeted indications, or inability to consent were excluded. All patients underwent the same CMR protocol with contrast, in breath-hold (BH) or free breathing (FB). Supervising radiologists recorded procedure errors (plane prescription, forgotten views, incorrect propagation of cardiac planes, and field-of-view mismanagement). Scan times and idle phase (non-acquisition portion) were computed from scanner logs. Most data were non-normally distributed and compared using non-parametric tests. Eighty-two patients (mean age, 51.6 years ± 17.5; 56 men) were included. Forty-four patients underwent automated and 38 manual CMRs. The mean rate of procedure errors was significantly (p = 0.01) lower in the automated (0.45) than in the manual group (1.13). The rate of error-free examinations was higher (p = 0.03) in the automated (31/44; 70.5%) than in the manual group (17/38; 44.7%). Automated studies were shorter than manual studies in FB (30.3 vs 36.5 min, p < 0.001) but had similar durations in BH (42.0 vs 43.5 min, p = 0.42). The idle phase was lower in automated studies for FB and BH strategies (both p < 0.001). An AI-based automated software performed CMR at a clinical level with fewer planning errors and improved efficiency compared to manual planning. Question What is the impact of an AI-based automated CMR planning software on procedure errors and scan times compared to manual planning alone? Findings Software-driven examinations were more reliable (71% error-free) than human-planned ones (45% error-free) and showed improved efficiency with reduced idle time. Clinical relevance CMR examinations require extensive technologist training, and continuous attention, and involve many planning steps. A fully automated software reliably acquired non-stress CMR potentially reducing mistake risk and increasing data homogeneity.

Artificial Intelligence Iterative Reconstruction for Dose Reduction in Pediatric Chest CT: A Clinical Assessment via Below 3 Years Patients With Congenital Heart Disease.

Zhang F, Peng L, Zhang G, Xie R, Sun M, Su T, Ge Y

pubmed logopapersJul 1 2025
To assess the performance of a newly introduced deep learning-based reconstruction algorithm, namely the artificial intelligence iterative reconstruction (AIIR), in reducing the dose of pediatric chest CT by using the image data of below 3-year-old patients with congenital heart disease (CHD). The lung image available from routine-dose cardiac CT angiography (CTA) on below 3 years patients with CHD was employed as a reference for evaluating the paired low-dose chest CT. A total of 191 subjects were prospectively enrolled, where the dose for chest CT was reduced to ~0.1 mSv while the cardiac CTA protocol was kept unchanged. The low-dose chest CT images, obtained with the AIIR and the hybrid iterative reconstruction (HIR), were compared in image quality, ie, overall image quality and lung structure depiction, and in diagnostic performance, ie, severity assessment of pneumonia and airway stenosis. Compared with the reference, lung image quality was not found significantly different on low-dose AIIR images (all P >0.05) but obviously inferior with the HIR (all P <0.05). Compared with the HIR, low-dose AIIR images also achieved a closer pneumonia severity index (AIIR 4.32±3.82 vs. Ref 4.37±3.84, P >0.05; HIR 5.12±4.06 vs. Ref 4.37±3.84, P <0.05) and airway stenosis grading (consistently graded: AIIR 88.5% vs. HIR 56.5% ) to the reference. AIIR has the potential for large dose reduction in chest CT of patients below 3 years of age while preserving image quality and achieving diagnostic results nearly equivalent to routine dose scans.

Intraindividual Comparison of Image Quality Between Low-Dose and Ultra-Low-Dose Abdominal CT With Deep Learning Reconstruction and Standard-Dose Abdominal CT Using Dual-Split Scan.

Lee TY, Yoon JH, Park JY, Park SH, Kim H, Lee CM, Choi Y, Lee JM

pubmed logopapersJul 1 2025
The aim of this study was to intraindividually compare the conspicuity of focal liver lesions (FLLs) between low- and ultra-low-dose computed tomography (CT) with deep learning reconstruction (DLR) and standard-dose CT with model-based iterative reconstruction (MBIR) from a single CT using dual-split scan in patients with suspected liver metastasis via a noninferiority design. This prospective study enrolled participants who met the eligibility criteria at 2 tertiary hospitals in South Korea from June 2022 to January 2023. The criteria included ( a ) being aged between 20 and 85 years and ( b ) having suspected or known liver metastases. Dual-source CT scans were conducted, with the standard radiation dose divided in a 2:1 ratio between tubes A and B (67% and 33%, respectively). The voltage settings of 100/120 kVp were selected based on the participant's body mass index (<30 vs ≥30 kg/m 2 ). For image reconstruction, MBIR was utilized for standard-dose (100%) images, whereas DLR was employed for both low-dose (67%) and ultra-low-dose (33%) images. Three radiologists independently evaluated FLL conspicuity, the probability of metastasis, and subjective image quality using a 5-point Likert scale, in addition to quantitative signal-to-noise and contrast-to-noise ratios. The noninferiority margins were set at -0.5 for conspicuity and -0.1 for detection. One hundred thirty-three participants (male = 58, mean body mass index = 23.0 ± 3.4 kg/m 2 ) were included in the analysis. The low- and ultra-low- dose had a lower radiation dose than the standard-dose (median CT dose index volume: 3.75, 1.87 vs 5.62 mGy, respectively, in the arterial phase; 3.89, 1.95 vs 5.84 in the portal venous phase, P < 0.001 for all). Median FLL conspicuity was lower in the low- and ultra-low-dose scans compared with the standard-dose (3.0 [interquartile range, IQR: 2.0, 4.0], 3.0 [IQR: 1.0, 4.0] vs 3.0 [IQR: 2.0, 4.0] in the arterial phase; 4.0 [IQR: 1.0, 5.0], 3.0 [IQR: 1.0, 4.0] vs 4.0 [IQR: 2.0, 5.0] in the portal venous phases), yet within the noninferiority margin ( P < 0.001 for all). FLL detection was also lower but remained within the margin (lesion detection rate: 0.772 [95% confidence interval, CI: 0.727, 0.812], 0.754 [0.708, 0.795], respectively) compared with the standard-dose (0.810 [95% CI: 0.770, 0.844]). Sensitivity for liver metastasis differed between the standard- (80.6% [95% CI: 76.0, 84.5]), low-, and ultra-low-doses (75.7% [95% CI: 70.2, 80.5], 73.7 [95% CI: 68.3, 78.5], respectively, P < 0.001 for both), whereas specificity was similar ( P > 0.05). Low- and ultra-low-dose CT with DLR showed noninferior FLL conspicuity and detection compared with standard-dose CT with MBIR. Caution is needed due to a potential decrease in sensitivity for metastasis ( clinicaltrials.gov/NCT05324046 ).

Accelerating brain T2-weighted imaging using artificial intelligence-assisted compressed sensing combined with deep learning-based reconstruction: a feasibility study at 5.0T MRI.

Wen Y, Ma H, Xiang S, Feng Z, Guan C, Li X

pubmed logopapersJul 1 2025
T2-weighted imaging (T2WI), renowned for its sensitivity to edema and lesions, faces clinical limitations due to prolonged scanning time, increasing patient discomfort, and motion artifacts. The individual applications of artificial intelligence-assisted compressed sensing (ACS) and deep learning-based reconstruction (DLR) technologies have demonstrated effectiveness in accelerated scanning. However, the synergistic potential of ACS combined with DLR at 5.0T remains unexplored. This study systematically evaluates the diagnostic efficacy of the integrated ACS-DLR technique for T2WI at 5.0T, comparing it to conventional parallel imaging (PI) protocols. The prospective analysis was performed on 98 participants who underwent brain T2WI scans using ACS, DLR, and PI techniques. Two observers evaluated the overall image quality, truncation artifacts, motion artifacts, cerebrospinal fluid flow artifacts, vascular pulsation artifacts, and the significance of lesions. Subjective rating differences among the three sequences were compared. Objective assessment involved the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in gray matter, white matter, and cerebrospinal fluid for each sequence. The SNR, CNR, and acquisition time of each sequence were compared. The acquisition time for ACS and DLR was reduced by 78%. The overall image quality of DLR is higher than that of ACS (P < 0.001) and equivalent to PI (P > 0.05). The SNR of the DLR sequence is the highest, and the CNR of DLR is higher than that of the ACS sequence (P < 0.001) and equivalent to PI (P > 0.05). The integration of ACS and DLR enables the ultrafast acquisition of brain T2WI while maintaining superior SNR and comparable CNR compared to PI sequences. Not applicable.

Evaluation of MRI-based synthetic CT for lumbar degenerative disease: a comparison with CT.

Jiang Z, Zhu Y, Wang W, Li Z, Li Y, Zhang M

pubmed logopapersJul 1 2025
Patients with lumbar degenerative disease typically undergo preoperative MRI combined with CT scans, but this approach introduces additional ionizing radiation and examination costs. To compare the effectiveness of MRI-based synthetic CT (sCT) in displaying lumbar degenerative changes, using CT as the gold standard. This prospective study was conducted between June 2021 and September 2023. Adult patients suspected of lumbar degenerative disease were enrolled and underwent both lumbar MRI and CT scans on the same day. The MRI images were processed using a deep learning-based image synthesis method (BoneMRI) to generate sCT images. Two radiologists independently assessed and measured the display and length of osteophytes, the presence of annular calcifications, and the CT values (HU) of L1 vertebrae on both sCT and CT images. The consistency between CT and sCT in terms of imaging results was evaluated using equivalence statistical tests. The display performance of sCT images generated from MRI scans by different manufacturers and field strengths was also compared. A total of 105 participants were included (54 males and 51 females, aged 19-95 years). sCT demonstrated statistical equivalence to CT in displaying osteophytes and annular calcifications but showed poorer performance in detecting osteoporosis. The display effectiveness of sCT images synthesized from MRI scans obtained using different imaging equipment was consistent. sCT demonstrated comparable effectiveness to CT in geometric measurements of lumbar degenerative changes. However, sCT cannot independently detect osteoporosis. When combined with conventional MRI's soft tissue information, sCT offers a promising possibility for radiation-free diagnosis and preoperative planning.

Image quality assessment of artificial intelligence iterative reconstruction for low dose unenhanced abdomen: comparison with hybrid iterative reconstruction.

Qi H, Cui D, Xu S, Li W, Zeng Q

pubmed logopapersJul 1 2025
To assess the impact of artificial intelligence iterative reconstruction algorithms (AIIR) on image quality with phantom and clinical studies. The phantom images were reconstructed with the hybrid iterative algorithm (HIR: Karl 3D-3, 5, 7, 9) and AIIR (grades 1-5) algorithm. Noise power spectra (NPS), task transfer functions (TTF) were measured, and additionally sharpness was assessed using a "blur metric" procedure. Sixty-two consecutive patients underwent standard-dose and low-dose unenhanced abdominal computed tomography (CT) scans, i.e., SDCT and LDCT groups, respectively. The SDCT images reconstructed using the Karl 3D-5, and the LDCT images reconstructed using the Karl 3D-5 and the AIIR-3 and 5, respectively. CT values, standard deviation (SD), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were assessed for hepatic parenchyma and paravertebral muscles. Images were independently evaluated by two radiologists for image-quality, noise, sharpness, and lesion diagnostic confidence. In the phantom study, AIIR algorithm provided higher TTF<sub>50%</sub> and NPS average spatial frequency compared to HIR. In the clinical study, there was no statistically significant difference in CT values among the four reconstruction images (p > 0.05). The LDCT group AIIR-3 obtained the lowest SD values and the highest mean CNR and SNR values compared to the other three groups (p < 0.05). For qualitative assessment, the image subjective characteristic scores of AIIR-5 in the LDCT group, compared with the SDCT group, were not statistically significant (p > 0.05). AIIR reduces radiation dose levels by approximately 78% and still maintains the image quality of unenhanced abdominal CT compared to HIR with SDCT. NCT06142539.
Page 11 of 25249 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.