Sort by:
Page 11 of 15147 results

AI for fracture diagnosis in clinical practice: Four approaches to systematic AI-implementation and their impact on AI-effectiveness.

Loeffen DV, Zijta FM, Boymans TA, Wildberger JE, Nijssen EC

pubmed logopapersJun 1 2025
Artificial Intelligence (AI) has been shown to enhance fracture-detection-accuracy, but the most effective AI-implementation in clinical practice is less well understood. In the current study, four approaches to AI-implementation are evaluated for their impact on AI-effectiveness. Retrospective single-center study based on all consecutive, around-the-clock radiographic examinations for suspected fractures, and accompanying clinical-practice radiologist-diagnoses, between January and March 2023. These image-sets were independently analysed by a dedicated bone-fracture-detection-AI. Findings were combined with radiologist clinical-practice diagnoses to simulate the four AI-implementation methods deemed most relevant to clinical workflows: AI-standalone (radiologist-findings not consulted); AI-problem-solving (AI-findings consulted when radiologist in doubt); AI-triage (radiologist-findings consulted when AI in doubt); and AI-safety net (AI-findings consulted when radiologist diagnosis negative). Reference-standard diagnoses were established by two senior musculoskeletal-radiologists (by consensus in cases of disagreement). Radiologist- and radiologist + AI diagnoses were compared for false negatives (FN), false positives (FP) and their clinical consequences. Experience-level-subgroups radiologists-in-training-, non-musculoskeletal-radiologists, and dedicated musculoskeletal-radiologists were analysed separately. 1508 image-sets were included (1227 unique patients; 40 radiologist-readers). Radiologist results were: 2.7 % FN (40/1508), 28 with clinical consequences; 1.2 % FP (18/1508), 2 received full-fracture treatments (11.1 %). All AI-implementation methods changed overall FN and FP with statistical significance (p < 0.001): AI-standalone 1.5 % FN (23/1508; 11 consequences), 6.8 % FP (103/1508); AI-problem-solving 3.2 % FN (48/1508; 31 consequences), 0.6 % FP (9/1508); AI-triage 2.1 % FN (32/1508; 18 consequences), 1.7 % FP (26/1508); AI-safety net 0.07 % FN (1/1508; 1 consequence), 7.6 % FP (115/1508). Subgroups show similar trends, except AI-triage increased FN for all subgroups except radiologists-in-training. Implementation methods have a large impact on AI-effectiveness. These results suggest AI should not be considered for problem-solving or triage at this time; AI standalone performs better than either and may be a source of assistance where radiologists are unavailable. Best results were obtained implementing AI as safety net, which eliminates missed fractures with serious clinical consequences; even though false positives are increased, unnecessary treatments are limited.

Impact of artificial intelligence assisted lesion detection on radiologists' interpretation at multiparametric prostate MRI.

Nakrour N, Cochran RL, Mercaldo ND, Bradley W, Tsai LL, Prajapati P, Grimm R, von Busch H, Lo WC, Harisinghani MG

pubmed logopapersJun 1 2025
To compare prostate cancer lesion detection using conventional and artificial intelligence (AI)-assisted image interpretation at multiparametric MRI (mpMRI). A retrospective study of 53 consecutive patients who underwent prostate mpMRI and subsequent prostate tissue sampling was performed. Two board-certified radiologists (with 4 and 12 years of experience) blinded to the clinical information interpreted anonymized exams using the PI-RADS v2.1 framework without and with an AI-assistance tool. The AI software tool provided radiologists with gland segmentation and automated lesion detection assigning a probability score for the likelihood of the presence of clinically significant prostate cancer (csPCa). The reference standard for all cases was the prostate pathology from systematic and targeted biopsies. Statistical analyses assessed interrater agreement and compared diagnostic performances with and without AI assistance. Within the entire cohort, 42 patients (79 %) harbored Gleason-positive disease, with 25 patients (47 %) having csPCa. Radiologists' diagnostic performance for csPCa was significantly improved over conventional interpretation with AI assistance (reader A: AUC 0.82 vs. 0.72, p = 0.03; reader B: AUC 0.78 vs. 0.69, p = 0.03). Without AI assistance, 81 % (n = 36; 95 % CI: 0.89-0.91) of the lesions were scored similarly by radiologists for lesion-level characteristics, and with AI assistance, 59 % (26, 0.82-0.89) of the lesions were scored similarly. For reader A, there was a significant difference in PI-RADS scores (p = 0.02) between AI-assisted and non-assisted assessments. Signficant differences were not detected for reader B. AI-assisted prostate mMRI interpretation improved radiologist diagnostic performance over conventional interpretation independent of reader experience.

Leveraging GPT-4 enables patient comprehension of radiology reports.

van Driel MHE, Blok N, van den Brand JAJG, van de Sande D, de Vries M, Eijlers B, Smits F, Visser JJ, Gommers D, Verhoef C, van Genderen ME, Grünhagen DJ, Hilling DE

pubmed logopapersJun 1 2025
To assess the feasibility of using GPT-4 to simplify radiology reports into B1-level Dutch for enhanced patient comprehension. This study utilised GPT-4, optimised through prompt engineering in Microsoft Azure. The researchers iteratively refined prompts to ensure accurate and comprehensive translations of radiology reports. Two radiologists assessed the simplified outputs for accuracy, completeness, and patient suitability. A third radiologist independently validated the final versions. Twelve colorectal cancer patients were recruited from two hospitals in the Netherlands. Semi-structured interviews were conducted to evaluate patients' comprehension and satisfaction with AI-generated reports. The optimised GPT-4 tool produced simplified reports with high accuracy (mean score 3.33/4). Patient comprehension improved significantly from 2.00 (original reports) to 3.28 (simplified reports) and 3.50 (summaries). Correct classification of report outcomes increased from 63.9% to 83.3%. Patient satisfaction was high (mean 8.30/10), with most preferring the long simplified report. RADiANT successfully enhances patient understanding and satisfaction through automated AI-driven report simplification, offering a scalable solution for patient-centred communication in clinical practice. This tool reduces clinician workload and supports informed patient decision-making, demonstrating the potential of LLMs beyond English-based healthcare contexts.

Real-time brain tumor detection in intraoperative ultrasound: From model training to deployment in the operating room.

Cepeda S, Esteban-Sinovas O, Romero R, Singh V, Shett P, Moiyadi A, Zemmoura I, Giammalva GR, Del Bene M, Barbotti A, DiMeco F, West TR, Nahed BV, Arrese I, Hornero R, Sarabia R

pubmed logopapersMay 30 2025
Intraoperative ultrasound (ioUS) is a valuable tool in brain tumor surgery due to its versatility, affordability, and seamless integration into the surgical workflow. However, its adoption remains limited, primarily because of the challenges associated with image interpretation and the steep learning curve required for effective use. This study aimed to enhance the interpretability of ioUS images by developing a real-time brain tumor detection system deployable in the operating room. We collected 2D ioUS images from the BraTioUS and ReMIND datasets, annotated with expert-refined tumor labels. Using the YOLO11 architecture and its variants, we trained object detection models to identify brain tumors. The dataset included 1732 images from 192 patients, divided into training, validation, and test sets. Data augmentation expanded the training set to 11,570 images. In the test dataset, YOLO11s achieved the best balance of precision and computational efficiency, with a mAP@50 of 0.95, mAP@50-95 of 0.65, and a processing speed of 34.16 frames per second. The proposed solution was prospectively validated in a cohort of 20 consecutively operated patients diagnosed with brain tumors. Neurosurgeons confirmed its seamless integration into the surgical workflow, with real-time predictions accurately delineating tumor regions. These findings highlight the potential of real-time object detection algorithms to enhance ioUS-guided brain tumor surgery, addressing key challenges in interpretation and providing a foundation for future development of computer vision-based tools for neuro-oncological surgery.

CCTA-Derived coronary plaque burden offers enhanced prognostic value over CAC scoring in suspected CAD patients.

Dahdal J, Jukema RA, Maaniitty T, Nurmohamed NS, Raijmakers PG, Hoek R, Driessen RS, Twisk JWR, Bär S, Planken RN, van Royen N, Nijveldt R, Bax JJ, Saraste A, van Rosendael AR, Knaapen P, Knuuti J, Danad I

pubmed logopapersMay 30 2025
To assess the prognostic utility of coronary artery calcium (CAC) scoring and coronary computed tomography angiography (CCTA)-derived quantitative plaque metrics for predicting adverse cardiovascular outcomes. The study enrolled 2404 patients with suspected coronary artery disease (CAD) but without a prior history of CAD. All participants underwent CAC scoring and CCTA, with plaque metrics quantified using an artificial intelligence (AI)-based tool (Cleerly, Inc). Percent atheroma volume (PAV) and non-calcified plaque volume percentage (NCPV%), reflecting total plaque burden and the proportion of non-calcified plaque volume normalized to vessel volume, were evaluated. The primary endpoint was a composite of all-cause mortality and non-fatal myocardial infarction (MI). Cox proportional hazard models, adjusted for clinical risk factors and early revascularization, were employed for analysis. During a median follow-up of 7.0 years, 208 patients (8.7%) experienced the primary endpoint, including 73 cases of MI (3%). The model incorporating PAV demonstrated superior discriminatory power for the composite endpoint (AUC = 0.729) compared to CAC scoring (AUC = 0.706, P = 0.016). In MI prediction, PAV (AUC = 0.791) significantly outperformed CAC (AUC = 0.699, P < 0.001), with NCPV% showing the highest prognostic accuracy (AUC = 0.814, P < 0.001). AI-driven assessment of coronary plaque burden enhances prognostic accuracy for future adverse cardiovascular events, highlighting the critical role of comprehensive plaque characterization in refining risk stratification strategies.

Diagnostic Efficiency of an Artificial Intelligence-Based Technology in Dental Radiography.

Obrubov AA, Solovykh EA, Nadtochiy AG

pubmed logopapersMay 30 2025
We present results of the development of Dentomo artificial intelligence model based on two neural networks. The model includes a database and a knowledge base harmonized with SNOMED CT that allows processing and interpreting the results of cone beam computed tomography (CBCT) scans of the dental system, in particular, identifying and classifying teeth, identifying CT signs of pathology and previous treatments. Based on these data, artificial intelligence can draw conclusions and generate medical reports, systematize the data, and learn from the results. The diagnostic effectiveness of Dentomo was evaluated. The first results of the study have demonstrated that the model based on neural networks and artificial intelligence is a valuable tool for analyzing CBCT scans in clinical practice and optimizing the dentist workflow.

Deep learning reconstruction improves computer-aided pulmonary nodule detection and measurement accuracy for ultra-low-dose chest CT.

Wang J, Zhu Z, Pan Z, Tan W, Han W, Zhou Z, Hu G, Ma Z, Xu Y, Ying Z, Sui X, Jin Z, Song L, Song W

pubmed logopapersMay 30 2025
To compare the image quality and pulmonary nodule detectability and measurement accuracy between deep learning reconstruction (DLR) and hybrid iterative reconstruction (HIR) of chest ultra-low-dose CT (ULDCT). Participants who underwent chest standard-dose CT (SDCT) followed by ULDCT from October 2020 to January 2022 were prospectively included. ULDCT images reconstructed with HIR and DLR were compared with SDCT images to evaluate image quality, nodule detection rate, and measurement accuracy using a commercially available deep learning-based nodule evaluation system. Wilcoxon signed-rank test was used to evaluate the percentage errors of nodule size and nodule volume between HIR and DLR images. Eighty-four participants (54 ± 13 years; 26 men) were finally enrolled. The effective radiation doses of ULDCT and SDCT were 0.16 ± 0.02 mSv and 1.77 ± 0.67 mSv, respectively (P < 0.001). The mean ± standard deviation of the lung tissue noises was 61.4 ± 3.0 HU for SDCT, 61.5 ± 2.8 HU and 55.1 ± 3.4 HU for ULDCT reconstructed with HIR-Strong setting (HIR-Str) and DLR-Strong setting (DLR-Str), respectively (P < 0.001). A total of 535 nodules were detected. The nodule detection rates of ULDCT HIR-Str and ULDCT DLR-Str were 74.0% and 83.4%, respectively (P < 0.001). The absolute percentage error in nodule volume from that of SDCT was 19.5% in ULDCT HIR-Str versus 17.9% in ULDCT DLR-Str (P < 0.001). Compared with HIR, DLR reduced image noise, increased nodule detection rate, and improved measurement accuracy of nodule volume at chest ULDCT. Not applicable.

Motion-resolved parametric imaging derived from short dynamic [<sup>18</sup>F]FDG PET/CT scans.

Artesani A, van Sluis J, Providência L, van Snick JH, Slart RHJA, Noordzij W, Tsoumpas C

pubmed logopapersMay 29 2025
This study aims to assess the added value of utilizing short-dynamic whole-body PET/CT scans and implementing motion correction before quantifying metabolic rate, offering more insights into physiological processes. While this approach may not be commonly adopted, addressing motion effects is crucial due to their demonstrated potential to cause significant errors in parametric imaging. A 15-minute dynamic FDG PET acquisition protocol was utilized for four lymphoma patients undergoing therapy evaluation. Parametric imaging was obtained using a population-based input function (PBIF) derived from twelve patients with full 65-minute dynamic FDG PET acquisition. AI-based registration methods were employed to correct misalignments between both PET and ACCT and PET-to-PET. Tumour characteristics were assessed using both parametric images and standardized uptake values (SUV). The motion correction process significantly reduced mismatches between images without significantly altering voxel intensity values, except for SUV<sub>max</sub>. Following the alignment of the attenuation correction map with the PET frame, an increase in SUV<sub>max</sub> in FDG-avid lymph nodes was observed, indicating its susceptibility to spatial misalignments. In contrast, Patlak K<sub>i</sub> parameter was highly sensitive to misalignment across PET frames, that notably altered the Patlak slope. Upon completion of the motion correction process, the parametric representation revealed heterogeneous behaviour among lymph nodes compared to SUV images. Notably, reduced volume of elevated metabolic rate was determined in the mediastinal lymph nodes in contrast with an SUV of 5 g/ml, indicating potential perfusion or inflammation. Motion resolved short-dynamic PET can enhance the utility and reliability of parametric imaging, an aspect often overlooked in commercial software.

Deep Learning-Based Breast Cancer Detection in Mammography: A Multi-Center Validation Study in Thai Population

Isarun Chamveha, Supphanut Chaiyungyuen, Sasinun Worakriangkrai, Nattawadee Prasawang, Warasinee Chaisangmongkon, Pornpim Korpraphong, Voraparee Suvannarerg, Shanigarn Thiravit, Chalermdej Kannawat, Kewalin Rungsinaporn, Suwara Issaragrisil, Payia Chadbunchachai, Pattiya Gatechumpol, Chawiporn Muktabhant, Patarachai Sereerat

arxiv logopreprintMay 29 2025
This study presents a deep learning system for breast cancer detection in mammography, developed using a modified EfficientNetV2 architecture with enhanced attention mechanisms. The model was trained on mammograms from a major Thai medical center and validated on three distinct datasets: an in-domain test set (9,421 cases), a biopsy-confirmed set (883 cases), and an out-of-domain generalizability set (761 cases) collected from two different hospitals. For cancer detection, the model achieved AUROCs of 0.89, 0.96, and 0.94 on the respective datasets. The system's lesion localization capability, evaluated using metrics including Lesion Localization Fraction (LLF) and Non-Lesion Localization Fraction (NLF), demonstrated robust performance in identifying suspicious regions. Clinical validation through concordance tests showed strong agreement with radiologists: 83.5% classification and 84.0% localization concordance for biopsy-confirmed cases, and 78.1% classification and 79.6% localization concordance for out-of-domain cases. Expert radiologists' acceptance rate also averaged 96.7% for biopsy-confirmed cases, and 89.3% for out-of-domain cases. The system achieved a System Usability Scale score of 74.17 for source hospital, and 69.20 for validation hospitals, indicating good clinical acceptance. These results demonstrate the model's effectiveness in assisting mammogram interpretation, with the potential to enhance breast cancer screening workflows in clinical practice.

Free-running isotropic three-dimensional cine magnetic resonance imaging with deep learning image reconstruction.

Erdem S, Erdem O, Stebbings S, Greil G, Hussain T, Zou Q

pubmed logopapersMay 29 2025
Cardiovascular magnetic resonance (CMR) cine imaging is the gold standard for assessing ventricular volumes and function. It typically requires two-dimensional (2D) bSSFP sequences and multiple breath-holds, which can be challenging for patients with limited breath-holding capacity. Three-dimensional (3D) cardiovascular magnetic resonance angiography (MRA) usually suffers from lengthy acquisition. Free-running 3D cine imaging with deep learning (DL) reconstruction offers a potential solution by acquiring both cine and angiography simultaneously. To evaluate the efficiency and accuracy of a ferumoxytol-enhanced 3D cine imaging MR sequence combined with DL reconstruction and Heart-NAV technology in patients with congenital heart disease. This Institutional Review Board approved this prospective study that compared (i) functional and volumetric measurements between 3 and 2D cine images; (ii) contrast-to-noise ratio (CNR) between deep-learning (DL) and compressed sensing (CS)-reconstructed 3D cine images; and (iii) cross-sectional area (CSA) measurements between DL-reconstructed 3D cine images and the clinical 3D MRA images acquired using the bSSFP sequence. Paired t-tests were used to compare group measurements, and Bland-Altman analysis assessed agreement in CSA and volumetric data. Sixteen patients (seven males; median age 6 years) were recruited. 3D cine imaging showed slightly larger right ventricular (RV) volumes and lower RV ejection fraction (EF) compared to 2D cine, with a significant difference only in RV end-systolic volume (P = 0.02). Left ventricular (LV) volumes and EF were slightly higher, and LV mass was lower, without significant differences (P ≥ 0.05). DL-reconstructed 3D cine images showed significantly higher CNR in all pulmonary veins than CS-reconstructed 3D cine images (all P < 0.05). Highly accelerated free-running 3D cine imaging with DL reconstruction shortens acquisition times and provides comparable volumetric measurements to 2D cine, and comparable CSA to clinical 3D MRA.
Page 11 of 15147 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.