Sort by:
Page 108 of 2402393 results

Emerging Role of MRI-Based Artificial Intelligence in Individualized Treatment Strategies for Hepatocellular Carcinoma: A Narrative Review.

Che F, Zhu J, Li Q, Jiang H, Wei Y, Song B

pubmed logopapersJul 19 2025
Hepatocellular carcinoma (HCC) is the most common subtype of primary liver cancer, with significant variability in patient outcomes even within the same stage according to the Barcelona Clinic Liver Cancer staging system. Accurately predicting patient prognosis and potential treatment response prior to therapy initiation is crucial for personalized clinical decision-making. This review focuses on the application of artificial intelligence (AI) in magnetic resonance imaging for guiding individualized treatment strategies in HCC management. Specifically, we emphasize AI-based tools for pre-treatment prediction of therapeutic response and prognosis. AI techniques such as radiomics and deep learning have shown strong potential in extracting high-dimensional imaging features to characterize tumors and liver parenchyma, predict treatment outcomes, and support prognostic stratification. These advances contribute to more individualized and precise treatment planning. However, challenges remain in model generalizability, interpretability, and clinical integration, highlighting the need for standardized imaging datasets and multi-omics fusion to fully realize the potential of AI in personalized HCC care. Evidence level: 5. Technical efficacy: 4.

Latent Class Analysis Identifies Distinct Patient Phenotypes Associated With Mistaken Treatment Decisions and Adverse Outcomes in Coronary Artery Disease.

Qi J, Wang Z, Ma X, Wang Z, Li Y, Yang L, Shi D, Zhou Y

pubmed logopapersJul 19 2025
This study aimed to identify patient characteristics linked to mistaken treatments and major adverse cardiovascular events (MACE) in percutaneous coronary intervention (PCI) for coronary artery disease (CAD) using deep learning-based fractional flow reserve (DEEPVESSEL-FFR, DVFFR). A retrospective cohort of 3,840 PCI patients was analyzed using latent class analysis (LCA) based on eight factors. Mistaken treatment was defined as negative DVFFR patients undergoing revascularization or positive DVFFR patients not receiving it. MACE included all-cause mortality, rehospitalization for unstable angina, and non-fatal myocardial infarction. Patients were classified into comorbidities (Class 1), smoking-drinking (Class 2), and relatively healthy (Class 3) groups. Mistaken treatment was highest in Class 2 (15.4% vs. 6.7%, <i>P</i> < .001), while MACE was highest in Class 1 (7.0% vs. 4.8%, <i>P</i> < .001). Adjusted analyses showed increased mistaken treatment risk in Class 1 (OR 1.96; 95% CI 1.49-2.57) and Class 2 (OR 1.69; 95% CI 1.28-2.25) compared with Class 3. Class 1 also had higher MACE risk (HR 1.53; 95% CI 1.10-2.12). In conclusion, comorbidities and smoking-drinking classes had higher mistaken treatment and MACE risks compared with the relatively healthy class.

Development of a clinical decision support system for breast cancer detection using ensemble deep learning.

Sandhu JK, Sharma C, Kaur A, Pandey SK, Sinha A, Shreyas J

pubmed logopapersJul 18 2025
Advancements in diagnostic technology are required to improve patient outcomes and facilitate early diagnosis, as breast cancer is a substantial global health concern. This research discusses the creation of a unique Deep Learning (DL) Ensemble Deep Learning based on a Clinical Decision Support System (EDL-CDSS) that enables the precise and expeditious diagnosis of breast cancer. Numerous DL models are combined in the proposed EDL-CDSS to create an ensemble method that optimizes the advantages and reduces the disadvantages of individual techniques. The team improves its capacity to extricate intricate patterns and features from medical imaging data by incorporating the Kelm Extreme Learning Machine (KELM), Deep Belief Network (DBN), and other DL architectures. Comprehensive testing has been conducted across various datasets to assess the efficacy of this system in comparison to individual DL models and traditional diagnostic methods. Among other objectives, the evaluation prioritizes precision, sensitivity, specificity, F1-score, accuracy, and overall accuracy to mitigate false positives and negatives. The experiment's conclusion exhibits a remarkable accuracy of 96.14% in comparison to prior advanced methodologies.

Deep learning-based ultrasound diagnostic model for follicular thyroid carcinoma.

Wang Y, Lu W, Xu L, Xu H, Kong D

pubmed logopapersJul 18 2025
It is challenging to preoperatively diagnose follicular thyroid carcinoma (FTC) on ultrasound images. This study aimed to develop an end-to-end diagnostic model that can classify thyroid tumors into benign tumors, FTC and other malignant tumors based on deep learning. This retrospective multi-center study included 10,771 consecutive adult patients who underwent conventional ultrasound and postoperative pathology between January 2018 and September 2021. We proposed a novel data augmentation method and a mixed loss function to solve an imbalanced dataset and applied them to a pre-trained convolutional neural network and transformer model that could effectively extract image features. The proposed model can directly identify FTC from other malignant subtypes and benign tumors based on ultrasound images. The testing dataset included 1078 patients (mean age, 47.3 years ± 11.8 (SD); 811 female patients; FTCs, 39 of 1078 (3.6%); Other malignancies, 385 of 1078 (35.7%)). The proposed classification model outperformed state-of-the-art models on differentiation of FTC from other malignant sub-types and benign ones, achieved an excellent diagnosis performance with balanced-accuracy 0.87, AUC 0.96 (95% CI: 0.96, 0.96), mean sensitivity 0.87 and mean specificity 0.92. Meanwhile, it was superior to radiologists included in this study for thyroid tumor diagnosis (balanced-accuracy: Junior 0.60, p < 0.001; Mid-level 0.59, p < 0.001; Senior 0.66, p < 0.001). The developed classification model addressed the class-imbalanced problem and achieved higher performance in differentiating FTC from other malignant subtypes and benign tumors compared with existing methods. Question Deep learning has the potential to improve preoperatively diagnostic accuracy for follicular thyroid carcinoma (FTC). Findings The proposed model achieved high accuracy, sensitivity and specificity in diagnosing follicular thyroid carcinoma, outperforming other models. Clinical relevance The proposed model is a promising computer-aided diagnostic tool for the clinical diagnosis of FTC, which potentially could help reduce missed diagnosis and misdiagnosis for FTC.

Sex estimation with parameters of the facial canal by computed tomography using machine learning algorithms and artificial neural networks.

Secgin Y, Kaya S, Harmandaoğlu O, Öztürk O, Senol D, Önbaş Ö, Yılmaz N

pubmed logopapersJul 18 2025
The skull is highly durable and plays a significant role in sex determination as one of the most dimorphic bones. The facial canal (FC), a clinically significant canal within the temporal bone, houses the facial nerve. This study aims to estimate sex using morphometric measurements from the FC through machine learning (ML) and artificial neural networks (ANNs). The study utilized Computed Tomography (CT) images of 200 individuals (100 females, 100 males) aged 19-65 years. These images were retrospectively retrieved from the Picture Archiving and Communication Systems (PACS) at Düzce University Faculty of Medicine, Department of Radiology, covering 2021-2024. Bilateral measurements of nine temporal bone parameters were performed in axial, coronal, and sagittal planes. ML algorithms including Quadratic Discriminant Analysis (QDA), Linear Discriminant Analysis (LDA), Decision Tree (DT), Extra Tree Classifier (ETC), Random Forest (RF), Logistic Regression (LR), Gaussian Naive Bayes (GaussianNB), and k-Nearest Neighbors (k-NN) were used, alongside a multilayer perceptron classifier (MLPC) from ANN algorithms. Except for QDA (Acc 0.93), all algorithms achieved an accuracy rate of 0.97. SHapley Additive exPlanations (SHAP) analysis revealed the five most impactful parameters: right SGAs, left SGAs, right TSWs, left TSWs and, the inner mouth width of the left FN, respectively. FN-centered morphometric measurements show high accuracy in sex determination and may aid in understanding FN positioning across sexes and populations. These findings may support rapid and reliable sex estimation in forensic investigations-especially in cases with fragmented craniofacial remains-and provide auxiliary diagnostic data for preoperative planning in otologic and skull base surgeries. They are thus relevant for surgeons, anthropologists, and forensic experts. Not applicable.

Machine learning and discriminant analysis model for predicting benign and malignant pulmonary nodules.

Li Z, Zhang W, Huang J, Lu L, Xie D, Zhang J, Liang J, Sui Y, Liu L, Zou J, Lin A, Yang L, Qiu F, Hu Z, Wu M, Deng Y, Zhang X, Lu J

pubmed logopapersJul 18 2025
Pulmonary Nodules (PNs) are a trend considered as the early manifestation of lung cancer. Among them, PNs that remain stable for more than two years or whose pathological results suggest not being lung cancer are considered benign PNs (BPNs), while PNs that conform to the growth pattern of tumors or whose pathological results indicate lung cancer are considered malignant PNs (MPNs). Currently, more than 90% of PNs detected by screening tests are benign, with a false positive rate of up to 96.4%. While a range of predictive models have been developed for the identification of MPNs, there are still some challenges in distinguishing between BPNs and MPNs. We included a total of 5197 patients for the case-control study according to the preset exclusion criteria and sample size. Among them, 4735 with BPNs and 2509 with MPNs were randomly divided into training, validation, and test sets according to a 7:1.5:1.5 ratio. Three widely applicable machine learning algorithms (Random Forests, Gradient Boosting Machine, and XGBoost) were used to screen the metrics, and then the corresponding predictive models were constructed using discriminative analysis, and the best performing model was selected as the target model. The model is internally validated with 10-fold cross validation and compared with PKUPH and Block models. We collated information from chest CT examinations performed from 2018 to 2021 in the physical examination population and found that the detection rate of PNs was 21.57% and showed an overall upward trend. The GMU_D model constructed by discriminative analysis based on machine learning screening features had an excellent discriminative performance (AUC = 0.866, 95% CI: 0.858-0.874), and higher accuracy than the PKUPH model (AUC = 0.559, 95% CI: 0.552-0.567) and the Block model (AUC = 0.823, 95% CI: 0.814-0.833). Moreover, the cross-validation results also exhibit excellent performance (AUC = 0.866, 95% CI: 0.858-0.874). The detection rate of PNs was 21.57% in the physical examination population undergoing chest CT. Meanwhile, based on real-world studies of PNs, a greater prediction tool was developed and validated that can be used to accurately distinguish between BPNs and MPNs with the excellent predictive performance and differentiation.

Clinical Translation of Integrated PET-MRI for Neurodegenerative Disease.

Shepherd TM, Dogra S

pubmed logopapersJul 18 2025
The prevalence of Alzheimer's disease and other dementias is increasing as populations live longer lifespans. Imaging is becoming a key component of the workup for patients with cognitive impairment or dementia. Integrated PET-MRI provides a unique opportunity for same-session multimodal characterization with many practical benefits to patients, referring physicians, radiologists, and researchers. The impact of integrated PET-MRI on clinical practice for early adopters of this technology can be profound. Classic imaging findings with integrated PET-MRI are illustrated for common neurodegenerative diseases or clinical-radiological syndromes. This review summarizes recent technical innovations that are being introduced into PET-MRI clinical practice and research for neurodegenerative disease. More recent MRI-based attenuation correction now performs similarly compared to PET-CT (e.g., whole-brain bias < 0.5%) such that early concerns for accurate PET tracer quantification with integrated PET-MRI appear resolved. Head motion is common in this patient population. MRI- and PET data-driven motion correction appear ready for routine use and should substantially improve PET-MRI image quality. PET-MRI by definition eliminates ~50% of the radiation from CT. Multiple hardware and software techniques for improving image quality with lower counts are reviewed (including motion correction). These methods can lower radiation to patients (and staff), increase scanner throughput, and generate better temporal resolution for dynamic PET. Deep learning has been broadly applied to PET-MRI. Deep learning analysis of PET and MRI data may provide accurate classification of different stages of Alzheimer's disease or predict progression to dementia. Over the past 5 years, clinical imaging of neurodegenerative disease has changed due to imaging research and the introduction of anti-amyloid immunotherapy-integrated PET-MRI is best suited for imaging these patients and its use appears poised for rapid growth outside academic medical centers. Evidence level: 5. Technical efficacy: Stage 3.

AI Prognostication in Nonsmall Cell Lung Cancer: A Systematic Review.

Augustin M, Lyons K, Kim H, Kim DG, Kim Y

pubmed logopapersJul 18 2025
The systematic literature review was performed on the use of artificial intelligence (AI) algorithms in nonsmall cell lung cancer (NSCLC) prognostication. Studies were evaluated for the type of input data (histology and whether CT, PET, and MRI were used), cancer therapy intervention, prognosis performance, and comparisons to clinical prognosis systems such as TNM staging. Further comparisons were drawn between different types of AI, such as machine learning (ML) and deep learning (DL). Syntheses of therapeutic interventions and algorithm input modalities were performed for comparison purposes. The review adheres to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The initial database identified 3880 results, which were reduced to 513 after the automatic screening, and 309 after the exclusion criteria. The prognostic performance of AI for NSCLC has been investigated using histology and genetic data, and CT, PET, and MR imaging for surgery, immunotherapy, and radiation therapy patients with and without chemotherapy. Studies per therapy intervention were 13 for immunotherapy, 10 for radiotherapy, 14 for surgery, and 34 for other, multiple, or no specific therapy. The results of this systematic review demonstrate that AI-based prognostication methods consistently present higher prognostic performance for NSCLC, especially when directly compared with traditional prognostication techniques such as TNM staging. The use of DL outperforms ML-based prognostication techniques. DL-based prognostication demonstrates the potential for personalized precision cancer therapy as a supplementary decision-making tool. Before it is fully utilized in clinical practice, it is recommended that it be thoroughly validated through well-designed clinical trials.

Performance of Machine Learning in Diagnosing KRAS (Kirsten Rat Sarcoma) Mutations in Colorectal Cancer: Systematic Review and Meta-Analysis.

Chen K, Qu Y, Han Y, Li Y, Gao H, Zheng D

pubmed logopapersJul 18 2025
With the widespread application of machine learning (ML) in the diagnosis and treatment of colorectal cancer (CRC), some studies have investigated the use of ML techniques for the diagnosis of KRAS (Kirsten rat sarcoma) mutation. Nevertheless, there is scarce evidence from evidence-based medicine to substantiate its efficacy. Our study was carried out to systematically review the performance of ML models developed using different modeling approaches, in diagnosing KRAS mutations in CRC. We aim to offer evidence-based foundations for the development and enhancement of future intelligent diagnostic tools. PubMed, Cochrane Library, Embase, and Web of Science were systematically retrieved, with the search cutoff date set to December 22, 2024. The encompassed studies are publicly published research papers that use ML to diagnose KRAS gene mutations in CRC. The risk of bias in the encompassed models was evaluated via the PROBAST (Prediction Model Risk of Bias Assessment Tool). A meta-analysis of the model's concordance index (c-index) was performed, and a bivariate mixed-effects model was used to summarize sensitivity and specificity based on diagnostic contingency tables. A total of 43 studies involving 10,888 patients were included. The modeling variables were derived from clinical characteristics, computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography/computed tomography, and pathological histology. In the validation cohort, for the ML model developed based on CT radiomic features, the c-index, sensitivity, and specificity were 0.87 (95% CI 0.84-0.90), 0.85 (95% CI 0.80-0.89), and 0.83 (95% CI 0.73-0.89), respectively. For the model developed using MRI radiomic features, the c-index, sensitivity, and specificity were 0.77 (95% CI 0.71-0.83), 0.78 (95% CI 0.72-0.83), and 0.73 (95% CI 0.63-0.81), respectively. For the ML model developed based on positron emission tomography/computed tomography radiomic features, the c-index, sensitivity, and specificity were 0.84 (95% CI 0.77-0.90), 0.73, and 0.83, respectively. Notably, the deep learning (DL) model based on pathological images demonstrated a c-index, sensitivity, and specificity of 0.96 (95% CI 0.94-0.98), 0.83 (95% CI 0.72-0.91), and 0.87 (95% CI 0.77-0.92), respectively. The DL model MRI-based model showed a c-index of 0.93 (95% CI 0.90-0.96), sensitivity of 0.85 (95% CI 0.75-0.91), and specificity of 0.83 (95% CI 0.77-0.88). ML is highly accurate in diagnosing KRAS mutations in CRC, and DL models based on MRI and pathological images exhibit particularly strong diagnosis accuracy. More broadly applicable DL-based diagnostic tools may be developed in the future. However, the clinical application of DL models remains relatively limited at present. Therefore, future research should focus on increasing sample sizes, improving model architectures, and developing more advanced DL models to facilitate the creation of highly efficient intelligent diagnostic tools for KRAS mutation diagnosis in CRC.

Explainable CT-based deep learning model for predicting hematoma expansion including intraventricular hemorrhage growth.

Zhao X, Zhang Z, Shui J, Xu H, Yang Y, Zhu L, Chen L, Chang S, Du C, Yao Z, Fang X, Shi L

pubmed logopapersJul 18 2025
Hematoma expansion (HE), including intraventricular hemorrhage (IVH) growth, significantly affects outcomes in patients with intracerebral hemorrhage (ICH). This study aimed to develop, validate, and interpret a deep learning model, HENet, for predicting three definitions of HE. Using CT scans and clinical data from 718 ICH patients across three hospitals, the multicenter retrospective study focused on revised hematoma expansion (RHE) definitions 1 and 2, and conventional HE (CHE). HENet's performance was compared with 2D models and physician predictions using two external validation sets. Results showed that HENet achieved high AUC values for RHE1, RHE2, and CHE predictions, surpassing physicians' predictions and 2D models in net reclassification index and integrated discrimination index for RHE1 and RHE2 outcomes. The Grad-CAM technique provided visual insights into the model's decision-making process. These findings suggest that integrating HENet into clinical practice could improve prediction accuracy and patient outcomes in ICH cases.
Page 108 of 2402393 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.