Sort by:
Page 8 of 28271 results

Inter-AI Agreement in Measuring Cine MRI-Derived Cardiac Function and Motion Patterns: A Pilot Study.

Lin K, Sarnari R, Gordon DZ, Markl M, Carr JC

pubmed logopapersJul 8 2025
Manually analyzing a series of MRI images to obtain information about the heart's motion is a time-consuming and labor-intensive task. Recently, many AI-driven tools have been used to automatically analyze cardiac MRI. However, it is still unknown whether the results generated by these tools are consistent. The aim of the present study was to investigate the agreement of AI-powered automated tools for measuring cine MRI-derived cardiac function and motion indices. Cine MRI datasets of 23 healthy volunteers (10 males, 32.7 ± 11.3 years) were processed using heart deformation analysis (HDA, Trufistrain) and Circle CVI 42. The left and right ventricular (LV/RV) end-diastolic volume (LVEDV and RVEDV), end-systolic volume (LVESV and RVESV), stroke volume (LVSV and RVSV), cardiac output (LVCO and RVCO), ejection fraction (LVEF and RVEF), LV mass (LVM), LV global strain, strain rate, displacement, and velocity were calculated without interventions. Agreements and discrepancies of indices acquired with the two tools were evaluated from various aspects using t-tests, Pearson correlation coefficient (r), interclass correlation coefficient (ICC), and coefficient of variation (CoV). Systematic biases for measuring cardiac function and motion indices were observed. In global cardiac function indices, LVEF (56.9% ± 6.4 vs. 57.8% ± 5.7, p = 0.433, r = 0.609, ICC = 0.757, CoV = 6.7%) and LVM (82.7 g ± 21.6 vs. 82.6 g ± 18.7, p = 0.988, r = 0.923, ICC = 0.956, CoV = 11.7%) acquired with HDA and Circle seemed to be exchangeable. Among cardiac motion indices, circumferential strain rate demonstrated good agreements between two tools (97 ± 14.6 vs. 97.8 ± 13.6, p = 0.598, r = 0.89, ICC = 0.943, CoV = 5.1%). Cine MRI-derived cardiac function and motion indices obtained using different AI-powered image processing tools are related but may also differ. Such variations should be considered when evaluating results sourced from different studies.

Artificial intelligence in cardiac sarcoidosis: ECG, Echo, CPET and MRI.

Umeojiako WI, Lüscher T, Sharma R

pubmed logopapersJul 8 2025
Cardiac sarcoidosis is a form of inflammatory cardiomyopathy that varies in its clinical presentation. It is associated with significant clinical complications such as high-degree atrioventricular block, ventricular tachycardia, heart failure and sudden cardiac death. It is challenging to diagnose clinically, and its increasing detection rate may represent increasing awareness of the disease by clinicians as well as a rising incidence. Prompt diagnosis and risk stratification reduces morbidity and mortality from cardiac sarcoidosis. Noninvasive diagnostic modalities such as ECG, echocardiography, PET/computed tomography (PET/CT) and cardiac MRI (cMRI) are increasingly playing important roles in cardiac sarcoidosis diagnosis. Artificial intelligence driven applications are increasingly being applied to these diagnostic modalities to improve the detection of cardiac sarcoidosis. Review of the recent literature suggests artificial intelligence based algorithms in PET/CT and cMRIs can predict cardiac sarcoidosis as accurately as trained experts, however, there are few published studies on artificial intelligence based algorithms in ECG and echocardiography. The impressive advances in artificial intelligence have the potential to transform patient screening in cardiac sarcoidosis, aid prompt diagnosis and appropriate risk stratification and change clinical practice.

Usefulness of compressed sensing coronary magnetic resonance angiography with deep learning reconstruction.

Tabo K, Kido T, Matsuda M, Tokui S, Mizogami G, Takimoto Y, Matsumoto M, Miyoshi M, Kido T

pubmed logopapersJul 7 2025
Coronary magnetic resonance angiography (CMRA) scans are generally time-consuming. CMRA with compressed sensing (CS) and artificial intelligence (AI) (CSAI CMRA) is expected to shorten the imaging time while maintaining image quality. This study aimed to evaluate the usefulness of CS and AI for non-contrast CMRA. Twenty volunteers underwent both CS and conventional CMRA. Conventional CMRA employed parallel imaging (PI) with an acceleration factor of 2. CS CMRA employed a combination of PI and CS with an acceleration factor of 3. Deep learning reconstruction was performed offline on the CS CMRA data after scanning, which was defined as CSAI CMRA. We compared the imaging time, image quality, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and vessel sharpness for each CMRA scan. The CS CMRA scan time was significantly shorter than that of conventional CMRA (460 s [343,753 s] vs. 727 s [567,939 s], p < 0.001). The image quality scores of the left anterior descending artery (LAD) and left circumflex artery (LCX) were significantly higher in conventional CMRA (LAD: 3.3 ± 0.7, LCX: 3.3 ± 0.7) and CSAI CMRA (LAD: 3.7 ± 0.6, LCX: 3.5 ± 0.7) than the CS CMRA (LAD: 2.9 ± 0.6, LCX: 2.9 ± 0.6) (p < 0.05). The right coronary artery scores did not vary among the three groups (p = 0.087). The SNR and CNR were significantly higher in CSAI CMRA (SNR: 12.3 [9.7, 13.7], CNR: 12.3 [10.5, 14.5]) and CS CMRA (SNR: 10.5 [8.2, 12.6], CNR: 9.5 [7.9, 12.6]) than conventional CMRA (SNR: 9.0 [7.8, 11.1], CNR: 7.7 [6.0, 10.1]) (p < 0.01). The vessel sharpness was significantly higher in CSAI CMRA (LAD: 0.87 [0.78, 0.91]) (p < 0.05), with no significant difference between the CS CMRA (LAD: 0.77 [0.71, 0.83]) and conventional CMRA (LAD: 0.77 [0.71, 0.86]). CSAI CMRA can shorten the imaging time while maintaining good image quality.

Artificial Intelligence-Enabled Point-of-Care Echocardiography: Bringing Precision Imaging to the Bedside.

East SA, Wang Y, Yanamala N, Maganti K, Sengupta PP

pubmed logopapersJul 7 2025
The integration of artificial intelligence (AI) with point-of-care ultrasound (POCUS) is transforming cardiovascular diagnostics by enhancing image acquisition, interpretation, and workflow efficiency. These advancements hold promise in expanding access to cardiovascular imaging in resource-limited settings and enabling early disease detection through screening applications. This review explores the opportunities and challenges of AI-enabled POCUS as it reshapes the landscape of cardiovascular imaging. AI-enabled systems can reduce operator dependency, improve image quality, and support clinicians-both novice and experienced-in capturing diagnostically valuable images, ultimately promoting consistency across diverse clinical environments. However, widespread adoption faces significant challenges, including concerns around algorithm generalizability, bias, explainability, clinician trust, and data privacy. Addressing these issues through standardized development, ethical oversight, and clinician-AI collaboration will be critical to safe and effective implementation. Looking ahead, emerging innovations-such as autonomous scanning, real-time predictive analytics, tele-ultrasound, and patient-performed imaging-underscore the transformative potential of AI-enabled POCUS in reshaping cardiovascular care and advancing equitable healthcare delivery worldwide.

Evaluation of AI-based detection of incidental pulmonary emboli in cardiac CT angiography scans.

Brin D, Gilat EK, Raskin D, Goitein O

pubmed logopapersJul 7 2025
Incidental pulmonary embolism (PE) is detected in 1% of cardiac CT angiography (CCTA) scans, despite the targeted aortic opacification and limited field of view. While artificial intelligence (AI) algorithms have proven effective in detecting PE in CT pulmonary angiography (CTPA), their use in CCTA remains unexplored. This study aimed to evaluate the feasibility of an AI algorithm for detecting incidental PE in CCTA scans. A dedicated AI algorithm was retrospectively applied to CCTA scans to detect PE. Radiology reports were reviewed using a natural language processing (NLP) tool to detect mentions of PE. Discrepancies between the AI and radiology reports triggered a blinded review by a cardiothoracic radiologist. All scans identified as positive for PE were thoroughly assessed for radiographic features, including the location of emboli and right ventricular (RV) strain. The performance of the AI algorithm for PE detection was compared to the original radiology report. Between 2021 and 2023, 1534 CCTA scans were analyzed. The AI algorithm identified 27 positive PE scans, with a subsequent review confirming PE in 22/27 cases. Of these, 10 (45.5%) were missed in the initial radiology report, all involving segmental or subsegmental arteries (P < 0.05) with no evidence of RV strain. This study demonstrates the feasibility of using an AI algorithm to detect incidental PE in CCTA scans. A notable radiology report miss rate (45.5%) of segmental and subsegmental emboli was documented. While these findings emphasize the potential value of AI for PE detection in the daily radiology workflow, further research is needed to fully determine its clinical impact.

CineMyoPS: Segmenting Myocardial Pathologies from Cine Cardiac MR.

Ding W, Li L, Qiu J, Lin B, Yang M, Huang L, Wu L, Wang S, Zhuang X

pubmed logopapersJul 7 2025
Myocardial infarction (MI) is a leading cause of death worldwide. Late gadolinium enhancement (LGE) and T2-weighted cardiac magnetic resonance (CMR) imaging can respectively identify scarring and edema areas, both of which are essential for MI risk stratification and prognosis assessment. Although combining complementary information from multi-sequence CMR is useful, acquiring these sequences can be time-consuming and prohibitive, e.g., due to the administration of contrast agents. Cine CMR is a rapid and contrast-free imaging technique that can visualize both motion and structural abnormalities of the myocardium induced by acute MI. Therefore, we present a new end-to-end deep neural network, referred to as CineMyoPS, to segment myocardial pathologies, i.e., scars and edema, solely from cine CMR images. Specifically, CineMyoPS extracts both motion and anatomy features associated with MI. Given the interdependence between these features, we design a consistency loss (resembling the co-training strategy) to facilitate their joint learning. Furthermore, we propose a time-series aggregation strategy to integrate MI-related features across the cardiac cycle, thereby enhancing segmentation accuracy for myocardial pathologies. Experimental results on a multi-center dataset demonstrate that CineMyoPS achieves promising performance in myocardial pathology segmentation, motion estimation, and anatomy segmentation.

Predicting Cardiopulmonary Exercise Testing Performance in Patients Undergoing Transthoracic Echocardiography - An AI Based, Multimodal Model

Alishetti, S., Pan, W., Beecy, A. N., Liu, Z., Gong, A., Huang, Z., Clerkin, K. J., Goldsmith, R. L., Majure, D. T., Kelsey, C., vanMaanan, D., Ruhl, J., Tesfuzigta, N., Lancet, E., Kumaraiah, D., Sayer, G., Estrin, D., Weinberger, K., Kuleshov, V., Wang, F., Uriel, N.

medrxiv logopreprintJul 6 2025
Background and AimsTransthoracic echocardiography (TTE) is a widely available tool for diagnosing and managing heart failure but has limited predictive value for survival. Cardiopulmonary exercise test (CPET) performance strongly correlates with survival in heart failure patients but is less accessible. We sought to develop an artificial intelligence (AI) algorithm using TTE and electronic medical records to predict CPET peak oxygen consumption (peak VO2) [&le;] 14 mL/kg/min. MethodsAn AI model was trained to predict peak VO2 [&le;] 14 mL/kg/min from TTE images, structured TTE reports, demographics, medications, labs, and vitals. The training set included patients with a TTE within 6 months of a CPET. Performance was retrospectively tested in a held-out group from the development cohort and an external validation cohort. Results1,127 CPET studies paired with concomitant TTE were identified. The best performance was achieved by using all components (TTE images, all structured clinical data). The model performed well at predicting a peak VO2 [&le;] 14 mL/kg/min, with an AUROC of 0.84 (development cohort) and 0.80 (external validation cohort). It performed consistently well using higher ([&le;] 18 mL/kg/min) and lower ([&le;] 12 mL/kg/min) cut-offs. ConclusionsThis multimodal AI model effectively categorized patients into low and high risk predicted peak VO2, demonstrating the potential to identify previously unrecognized patients in need of advanced heart failure therapies where CPET is not available.

DHR-Net: Dynamic Harmonized registration network for multimodal medical images.

Yang X, Li D, Chen S, Deng L, Wang J, Huang S

pubmed logopapersJul 5 2025
Although deep learning has driven remarkable advancements in medical image registration, deep neural network-based non-rigid deformation field generation methods demonstrate high accuracy in single-modality scenarios. However, multi-modal medical image registration still faces critical challenges. To address the issues of insufficient anatomical consistency and unstable deformation field optimization in cross-modal registration tasks among existing methods, this paper proposes an end-to-end medical image registration method based on a Dynamic Harmonized Registration framework (DHR-Net). DHR-Net employs a cascaded two-stage architecture, comprising a translation network and a registration network that operate in sequential processing phases. Furthermore, we propose a loss function based on the Noise Contrastive Estimation framework, which enhances anatomical consistency in cross-modal translation by maximizing mutual information between input and transformed image patches. This loss function incorporates a dynamic temperature adjustment mechanism that progressively optimizes feature contrast constraints during training to improve high-frequency detail preservation, thereby better constraining the topological structure of target images. Experiments conducted on the M&M Heart Dataset demonstrate that DHR-Net outperforms existing methods in registration accuracy, deformation field smoothness, and cross-modal robustness. The framework significantly enhances the registration quality of cardiac images while demonstrating exceptional performance in preserving anatomical structures, exhibiting promising potential for clinical applications.

Fine-tuning of language models for automated structuring of medical exam reports to improve patient screening and analysis.

Elvas LB, Santos R, Ferreira JC

pubmed logopapersJul 4 2025
The analysis of medical imaging reports is labour-intensive but crucial for accurate diagnosis and effective patient screening. Often presented as unstructured text, these reports require systematic organisation for efficient interpretation. This study applies Natural Language Processing (NLP) techniques tailored for European Portuguese to automate the analysis of cardiology reports, streamlining patient screening. Using a methodology involving tokenization, part-of-speech tagging and manual annotation, the MediAlbertina PT-PT language model was fine-tuned, achieving 96.13% accuracy in entity recognition. The system enables rapid identification of conditions such as aortic stenosis through an interactive interface, substantially reducing the time and effort required for manual review. It also facilitates patient monitoring and disease quantification, optimising healthcare resource allocation. This research highlights the potential of NLP tools in Portuguese healthcare contexts, demonstrating their applicability to medical report analysis and their broader relevance in improving efficiency and decision-making in diverse clinical environments.

Knowledge, attitudes, and practices of cardiovascular health care personnel regarding coronary CTA and AI-assisted diagnosis: a cross-sectional study.

Jiang S, Ma L, Pan K, Zhang H

pubmed logopapersJul 4 2025
Artificial intelligence (AI) holds significant promise for medical applications, particularly in coronary computed tomography angiography (CTA). We assessed the knowledge, attitudes, and practices (KAP) of cardiovascular health care personnel regarding coronary CTA and AI-assisted diagnosis. We conducted a cross-sectional survey from 1 July to 1 August 2024 at Tsinghua University Hospital, Beijing, China. Healthcare professionals, including both physicians and nurses, aged ≥18 years were eligible to participate. We used a structured questionnaire to collect demographic information and KAP scores. We analysed the data using correlation and regression methods, along with structural equation modelling. Among 496 participants, 58.5% were female, 52.6% held a bachelor's degree, and 40.7% worked in radiology. Mean KAP scores were 13.87 (standard deviation (SD) = 4.96, possible range = 0-20) for knowledge, 28.25 (SD = 4.35, possible range = 8-40) for attitude, and 31.67 (SD = 8.23, possible range = 10-50) for practice. Knowledge (r = 0.358; P < 0.001) and attitude positively correlated with practice (r = 0.489; P < 0.001). Multivariate logistic regression indicated that educational level, department affiliation, and job satisfaction were significant predictors of knowledge. Attitude was influenced by marital status, department, and years of experience, while practice was shaped by knowledge, attitude, departmental factors, and job satisfaction. Structural equation modelling showed that knowledge was directly affected by gender (β = -0.121; P = 0.009), workplace (β = -0.133; P = 0.004), department (β = -0.197; P < 0.001), employment status (β = -0.166; P < 0.001), and night shift frequency (β = 0.163; P < 0.001). Attitude was directly influenced by marriage (β = 0.124; P = 0.006) and job satisfaction (β = -0.528; P < 0.001). Practice was directly affected by knowledge (β = 0.389; P < 0.001), attitude (β = 0.533; P < 0.001), and gender (β = -0.092; P = 0.010). Additionally, gender (β = -0.051; P = 0.010) and marriage (β = 0.066; P = 0.007) had indirect effects on practice. Cardiovascular health care personnel exhibited suboptimal knowledge, positive attitudes, and relatively inactive practices regarding coronary CTA and AI-assisted diagnosis. Targeted educational efforts are needed to enhance knowledge and support the integration of AI into clinical workflows.
Page 8 of 28271 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.