Sort by:
Page 8 of 17168 results

Referenceless 4D Flow Cardiovascular Magnetic Resonance with deep learning.

Trenti C, Ylipää E, Ebbers T, Carlhäll CJ, Engvall J, Dyverfeldt P

pubmed logopapersJun 2 2025
Despite its potential to improve the assessment of cardiovascular diseases, 4D Flow CMR is hampered by long scan times. 4D Flow CMR is conventionally acquired with three motion encodings and one reference encoding, as the 3-dimensional velocity data are obtained by subtracting the phase of the reference from the phase of the motion encodings. In this study, we aim to use deep learning to predict the reference encoding from the three motion encodings for cardiovascular 4D Flow. A U-Net was trained with adversarial learning (U-Net<sub>ADV</sub>) and with a velocity frequency-weighted loss function (U-Net<sub>VEL</sub>) to predict the reference encoding from the three motion encodings obtained with a non-symmetric velocity-encoding scheme. Whole-heart 4D Flow datasets from 126 patients with different types of cardiomyopathies were retrospectively included. The models were trained on 113 patients with a 5-fold cross-validation, and tested on 13 patients. Flow volumes in the aorta and pulmonary artery, mean and maximum velocity, total and maximum turbulent kinetic energy at peak systole in the cardiac chambers and main vessels were assessed. 3-dimensional velocity data reconstructed with the reference encoding predicted by deep learning agreed well with the velocities obtained with the reference encoding acquired at the scanner for both models. U-Net<sub>ADV</sub> performed more consistently throughout the cardiac cycle and across the test subjects, while U-Net<sub>VEL</sub> performed better for systolic velocities. Comprehensively, the largest error for flow volumes, maximum and mean velocities was -6.031% for maximum velocities in the right ventricle for the U-Net<sub>ADV</sub>, and -6.92% for mean velocities in the right ventricle for U-Net<sub>VEL</sub>. For total turbulent kinetic energy, the highest errors were in the left ventricle (-77.17%) for the U-Net<sub>ADV</sub>, and in the right ventricle (24.96%) for the U-Net<sub>VEL</sub>, while for maximum turbulent kinetic energy were in the pulmonary artery for both models, with a value of -15.5% for U-Net<sub>ADV</sub> and 15.38% for the U-Net<sub>VEL</sub>. Deep learning-enabled referenceless 4D Flow CMR permits velocities and flow volumes quantification comparable to conventional 4D Flow. Omitting the reference encoding reduces the amount of acquired data by 25%, thus allowing shorter scan times or improved resolution, which is valuable for utilization in the clinical routine.

Evaluating the performance and potential bias of predictive models for the detection of transthyretin cardiac amyloidosis

Hourmozdi, J., Easton, N., Benigeri, S., Thomas, J. D., Narang, A., Ouyang, D., Duffy, G., Upton, R., Hawkes, W., Akerman, A., Okwuosa, I., Kline, A., Kho, A. N., Luo, Y., Shah, S. J., Ahmad, F. S.

medrxiv logopreprintJun 2 2025
BackgroundDelays in the diagnosis of transthyretin amyloid cardiomyopathy (ATTR-CM) contribute to the significant morbidity of the condition, especially in the era of disease-modifying therapies. Screening for ATTR-CM with AI and other algorithms may improve timely diagnosis, but these algorithms have not been directly compared. ObjectivesThe aim of this study was to compare the performance of four algorithms for ATTR-CM detection in a heart failure population and assess the risk for harms due to model bias. MethodsWe identified patients in an integrated health system from 2010-2022 with ATTR-CM and age- and sex-matched them to controls with heart failure to target 5% prevalence. We compared the performance of a claims-based random forest model (Huda et al. model), a regression-based score (Mayo ATTR-CM), and two deep learning echo models (EchoNet-LVH and EchoGo(R) Amyloidosis). We evaluated for bias using standard fairness metrics. ResultsThe analytical cohort included 176 confirmed cases of ATTR-CM and 3192 control patients with 79.2% self-identified as White and 9.0% as Black. The Huda et al. model performed poorly (AUC 0.49). Both deep learning echo models had a higher AUC when compared to the Mayo ATTR-CM Score (EchoNet-LVH 0.88; EchoGo Amyloidosis 0.92; Mayo ATTR-CM Score 0.79; DeLong P<0.001 for both). Bias auditing met fairness criteria for equal opportunity among patients who identified as Black. ConclusionsDeep learning, echo-based models to detect ATTR-CM demonstrated best overall discrimination when compared to two other models in external validation with low risk of harms due to racial bias.

Direct parametric reconstruction in dynamic PET using deep image prior and a novel parameter magnification strategy.

Hong X, Wang F, Sun H, Arabi H, Lu L

pubmed logopapersJun 2 2025
Multiple parametric imaging in positron emission tomography (PET) is challenging due to the noisy dynamic data and the complex mapping to kinetic parameters. Although methods like direct parametric reconstruction have been proposed to improve the image quality, limitations persist, particularly for nonlinear and small-value micro-parameters (e.g., k<sub>2</sub>, k<sub>3</sub>). This study presents a novel unsupervised deep learning approach to reconstruct and improve the quality of these micro-parameters. We proposed a direct parametric image reconstruction model, DIP-PM, integrating deep image prior (DIP) with a parameter magnification (PM) strategy. The model employs a U-Net generator to predict multiple parametric images using a CT image prior, with each output channel subsequently magnified by a factor to adjust the intensity. The model was optimized with a log-likelihood loss computed between the measured projection data and forward projected data. Two tracer datasets were simulated for evaluation: <sup>82</sup>Rb data using the 1-tissue compartment (1 TC) model and <sup>18</sup>F-FDG data using the 2-tissue compartment (2 TC) model, with 10-fold magnification applied to the 1 TC k<sub>2</sub> and the 2 TC k<sub>3</sub>, respectively. DIP-PM was compared to the indirect method, direct algorithm (OTEM) and the DIP method without parameter magnification (DIP-only). Performance was assessed on phantom data using peak signal-to-noise ratio (PSNR), normalized root mean square error (NRMSE) and structural similarity index (SSIM), as well as on real <sup>18</sup>F-FDG scan from a male subject. For the 1 TC model, OTEM performed well in K<sub>1</sub> reconstruction, but both indirect and OTEM methods showed high noise and poor performance in k<sub>2</sub>. The DIP-only method suppressed noise in k<sub>2</sub>, but failed to reconstruct fine structures in the myocardium. DIP-PM outperformed other methods with well-preserved detailed structures, particularly in k<sub>2</sub>, achieving the best metrics (PSNR: 19.00, NRMSE: 0.3002, SSIM: 0.9289). For the 2 TC model, traditional methods exhibited high noise and blurred structures in estimating all nonlinear parameters (K<sub>1</sub>, k<sub>2</sub>, k<sub>3</sub>), while DIP-based methods significantly improved image quality. DIP-PM outperformed all methods in k<sub>3</sub> (PSNR: 21.89, NRMSE: 0.4054, SSIM: 0.8797), and consequently produced the most accurate 2 TC K<sub>i</sub> images (PSNR: 22.74, NRMSE: 0.4897, SSIM: 0.8391). On real FDG data, DIP-PM also showed evident advantages in estimating K<sub>1</sub>, k<sub>2</sub> and k<sub>3</sub> while preserving myocardial structures. The results underscore the efficacy of the DIP-based direct parametric imaging in generating and improving quality of PET parametric images. This study suggests that the proposed DIP-PM method with the parameter magnification strategy can enhance the fidelity of nonlinear micro-parameter images.

P2TC: A Lightweight Pyramid Pooling Transformer-CNN Network for Accurate 3D Whole Heart Segmentation.

Cui H, Wang Y, Zheng F, Li Y, Zhang Y, Xia Y

pubmed logopapersJun 1 2025
Cardiovascular disease is a leading global cause of death, requiring accurate heart segmentation for diagnosis and surgical planning. Deep learning methods have been demonstrated to achieve superior performances in cardiac structures segmentation. However, there are still limitations in 3D whole heart segmentation, such as inadequate spatial context modeling, difficulty in capturing long-distance dependencies, high computational complexity, and limited representation of local high-level semantic information. To tackle the above problems, we propose a lightweight Pyramid Pooling Transformer-CNN (P2TC) network for accurate 3D whole heart segmentation. The proposed architecture comprises a dual encoder-decoder structure with a 3D pyramid pooling Transformer for multi-scale information fusion and a lightweight large-kernel Convolutional Neural Network (CNN) for local feature extraction. The decoder has two branches for precise segmentation and contextual residual handling. The first branch is used to generate segmentation masks for pixel-level classification based on the features extracted by the encoder to achieve accurate segmentation of cardiac structures. The second branch highlights contextual residuals across slices, enabling the network to better handle variations and boundaries. Extensive experimental results on the Multi-Modality Whole Heart Segmentation (MM-WHS) 2017 challenge dataset demonstrate that P2TC outperforms the most advanced methods, achieving the Dice scores of 92.6% and 88.1% in Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) modalities respectively, which surpasses the baseline model by 1.5% and 1.7%, and achieves state-of-the-art segmentation results.

Score-Based Diffusion Models With Self-Supervised Learning for Accelerated 3D Multi-Contrast Cardiac MR Imaging.

Liu Y, Cui ZX, Qin S, Liu C, Zheng H, Wang H, Zhou Y, Liang D, Zhu Y

pubmed logopapersJun 1 2025
Long scan time significantly hinders the widespread applications of three-dimensional multi-contrast cardiac magnetic resonance (3D-MC-CMR) imaging. This study aims to accelerate 3D-MC-CMR acquisition by a novel method based on score-based diffusion models with self-supervised learning. Specifically, we first establish a mapping between the undersampled k-space measurements and the MR images, utilizing a self-supervised Bayesian reconstruction network. Secondly, we develop a joint score-based diffusion model on 3D-MC-CMR images to capture their inherent distribution. The 3D-MC-CMR images are finally reconstructed using the conditioned Langenvin Markov chain Monte Carlo sampling. This approach enables accurate reconstruction without fully sampled training data. Its performance was tested on the dataset acquired by a 3D joint myocardial $ \text {T}_{{1}}$ and $ \text {T}_{{1}\rho }$ mapping sequence. The $ \text {T}_{{1}}$ and $ \text {T}_{{1}\rho }$ maps were estimated via a dictionary matching method from the reconstructed images. Experimental results show that the proposed method outperforms traditional compressed sensing and existing self-supervised deep learning MRI reconstruction methods. It also achieves high quality $ \text {T}_{{1}}$ and $ \text {T}_{{1}\rho }$ parametric maps close to the reference maps, even at a high acceleration rate of 14.

Cardiac Phase Estimation Using Deep Learning Analysis of Pulsed-Mode Projections: Toward Autonomous Cardiac CT Imaging.

Wu P, Haneda E, Pack JD, Heukensfeldt Jansen I, Hsiao A, McVeigh E, De Man B

pubmed logopapersJun 1 2025
Cardiac CT plays an important role in diagnosing heart diseases but is conventionally limited by its complex workflow that requires dedicated phase and bolus tracking devices [e.g., electrocardiogram (ECG) gating]. This work reports first progress towards robust and autonomous cardiac CT exams through joint deep learning (DL) and analytical analysis of pulsed-mode projections (PMPs). To this end, cardiac phase and its uncertainty were simultaneously estimated using a novel projection domain cardiac phase estimation network (PhaseNet), which utilizes sliding-window multi-channel feature extraction strategy and a long short-term memory (LSTM) block to extract temporal correlation between time-distributed PMPs. An uncertainty-driven Viterbi (UDV) regularizer was developed to refine the DL estimations at each time point through dynamic programming. Stronger regularization was performed at time points where DL estimations have higher uncertainty. The performance of the proposed phase estimation pipeline was evaluated using accurate physics-based emulated data. PhaseNet achieved improved phase estimation accuracy compared to the competing methods in terms of RMSE (~50% improvement vs. standard CNN-LSTM; ~24% improvement vs. multi-channel residual network). The added UDV regularizer resulted in an additional ~14% improvement in RMSE, achieving accurate phase estimation with <6% RMSE in cardiac phase (phase ranges from 0-100%). To our knowledge, this is the first publication of prospective cardiac phase estimation in the projection domain. Combined with our previous work on PMP-based bolus curve estimation, the proposed method could potentially be used to achieve autonomous cardiac scanning without ECG device and expert-in-the-loop bolus timing.

Phenotyping atherosclerotic plaque and perivascular adipose tissue: signalling pathways and clinical biomarkers in atherosclerosis.

Grodecki K, Geers J, Kwiecinski J, Lin A, Slipczuk L, Slomka PJ, Dweck MR, Nerlekar N, Williams MC, Berman D, Marwick T, Newby DE, Dey D

pubmed logopapersJun 1 2025
Computed tomography coronary angiography provides a non-invasive evaluation of coronary artery disease that includes phenotyping of atherosclerotic plaques and the surrounding perivascular adipose tissue (PVAT). Image analysis techniques have been developed to quantify atherosclerotic plaque burden and morphology as well as the associated PVAT attenuation, and emerging radiomic approaches can add further contextual information. PVAT attenuation might provide a novel measure of vascular health that could be indicative of the pathogenetic processes implicated in atherosclerosis such as inflammation, fibrosis or increased vascularity. Bidirectional signalling between the coronary artery and adjacent PVAT has been hypothesized to contribute to coronary artery disease progression and provide a potential novel measure of the risk of future cardiovascular events. However, despite the development of more advanced radiomic and artificial intelligence-based algorithms, studies involving large datasets suggest that the measurement of PVAT attenuation contributes only modest additional predictive discrimination to standard cardiovascular risk scores. In this Review, we explore the pathobiology of coronary atherosclerotic plaques and PVAT, describe their phenotyping with computed tomography coronary angiography, and discuss potential future applications in clinical risk prediction and patient management.

A continuous-action deep reinforcement learning-based agent for coronary artery centerline extraction in coronary CT angiography images.

Zhang Y, Luo G, Wang W, Cao S, Dong S, Yu D, Wang X, Wang K

pubmed logopapersJun 1 2025
The lumen centerline of the coronary artery allows vessel reconstruction used to detect stenoses and plaques. Discrete-action-based centerline extraction methods suffer from artifacts and plaques. This study aimed to develop a continuous-action-based method which performs more effectively in cases involving artifacts or plaques. A continuous-action deep reinforcement learning-based model was trained to predict the artery's direction and radius value. The model is based on an Actor-Critic architecture. The Actor learns a deterministic policy to output the actions made by an agent. These actions indicate the centerline's direction and radius value consecutively. The Critic learns a value function to evaluate the quality of the agent's actions. A novel DDR reward was introduced to measure the agent's action (both centerline extraction and radius estimate) at each step. The method achieved an average OV of 95.7%, OF of 93.6%, OT of 97.3%, and AI of 0.22 mm in 80 test data. In 53 cases with artifacts or plaques, it achieved an average OV of 95.0%, OF of 91.5%, OT of 96.7%, and AI of 0.23 mm. The 95% limits of agreement between the reference and estimated radius values were <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo></math> 0.46 mm and 0.43 mm in the 80 test data. Experiments demonstrate that the Actor-Critic architecture can achieve efficient centerline extraction and radius estimate. Compared with discrete-action-based methods, our method performs more effectively in cases involving artifacts or plaques. The extracted centerlines and radius values allow accurate coronary artery reconstruction that facilitates the detection of stenoses and plaques.

Changes of Pericoronary Adipose Tissue in Stable Heart Transplantation Recipients and Comparison with Controls.

Yang J, Chen L, Yu J, Chen J, Shi J, Dong N, Yu F, Shi H

pubmed logopapersJun 1 2025
Pericoronary adipose tissue (PCAT) is a key cardiovascular risk biomarker, yet its temporal changes after heart transplantation (HT) and comparison with controls remain unclear. This study investigates the temporal changes of PCAT in stable HT recipients and compares it to controls. In this study, we analyzed 159 stable HT recipients alongside two control groups. Both control groups were matched to a subgroup of HT recipients who did not have coronary artery stenosis. Group 1 consisted of 60 individuals matched for age, sex, and body mass index (BMI), with no history of hypertension, diabetes, hyperlipidemia, or smoking. Group 2 included 56 individuals additionally matched for hypertension, diabetes, hyperlipidemia, and smoking history. PCAT volume and fat attenuation index (FAI) were measured using AI-based software. Temporal changes in PCAT were assessed at multiple time points in HT recipients, and PCAT in the subgroup of HT recipients without coronary stenosis was compared to controls. Stable HT recipients exhibited a progressive decrease in FAI and an increase in PCAT volume over time, particularly in the first five years post-HT. Similar trends were observed in the subgroup of HT recipients without coronary stenosis. Compared to controls, PCAT FAI was significantly higher in the HT subgroup during the first five years post-HT (P < 0.001). After five years, differences persisted but diminished, with no statistically significant differences observed in the PCAT of left anterior descending artery (LAD) (P > 0.05). A negative correlation was observed between FAI and PCAT volume post-HT (r = - 0.75 ∼ - 0.53). PCAT volume and FAI undergo temporal changes in stable HT recipients, especially during the first five years post-HT. Even in HT recipients without coronary stenosis, PCAT FAI differs from controls, indicating distinct changes in this cohort.

Effect of Deep Learning Image Reconstruction on Image Quality and Pericoronary Fat Attenuation Index.

Mei J, Chen C, Liu R, Ma H

pubmed logopapersJun 1 2025
To compare the image quality and fat attenuation index (FAI) of coronary artery CT angiography (CCTA) under different tube voltages between deep learning image reconstruction (DLIR) and adaptive statistical iterative reconstruction V (ASIR-V). Three hundred one patients who underwent CCTA with automatic tube current modulation were prospectively enrolled and divided into two groups: 120 kV group and low tube voltage group. Images were reconstructed using ASIR-V level 50% (ASIR-V50%) and high-strength DLIR (DLIR-H). In the low tube voltage group, the voltage was selected according to Chinese BMI classification: 70 kV (BMI < 24 kg/m<sup>2</sup>), 80 kV (24 kg/m<sup>2</sup> ≤ BMI < 28 kg/m<sup>2</sup>), 100 kV (BMI ≥ 28 kg/m<sup>2</sup>). At the same tube voltage, the subjective and objective image quality, edge rise distance (ERD), and FAI between different algorithms were compared. Under different tube voltages, we used DLIR-H to compare the differences between subjective, objective image quality, and ERD. Compared with the 120 kV group, the DLIR-H image noise of 70 kV, 80 kV, and 100 kV groups increased by 36%, 25%, and 12%, respectively (all P < 0.001); contrast-to-noise ratio (CNR), subjective score, and ERD were similar (all P > 0.05). In the 70 kV, 80 kV, 100 kV, and 120 kV groups, compared with ASIR-V50%, DLIR-H image noise decreased by 50%, 53%, 47%, and 38-50%, respectively; CNR, subjective score, and FAI value increased significantly (all P < 0.001), ERD decreased. Compared with 120 kV tube voltage, the combination of DLIR-H and low tube voltage maintains image quality. At the same tube voltage, compared with ASIR-V, DLIR-H improves image quality and FAI value.
Page 8 of 17168 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.