Knowledge, attitudes, and practices of cardiovascular health care personnel regarding coronary CTA and AI-assisted diagnosis: a cross-sectional study.

Authors

Jiang S,Ma L,Pan K,Zhang H

Affiliations (2)

  • Department of Radiology, Tsinghua University Hospital, Beijing, China.
  • Department of Radiology, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China.

Abstract

Artificial intelligence (AI) holds significant promise for medical applications, particularly in coronary computed tomography angiography (CTA). We assessed the knowledge, attitudes, and practices (KAP) of cardiovascular health care personnel regarding coronary CTA and AI-assisted diagnosis. We conducted a cross-sectional survey from 1 July to 1 August 2024 at Tsinghua University Hospital, Beijing, China. Healthcare professionals, including both physicians and nurses, aged ≥18 years were eligible to participate. We used a structured questionnaire to collect demographic information and KAP scores. We analysed the data using correlation and regression methods, along with structural equation modelling. Among 496 participants, 58.5% were female, 52.6% held a bachelor's degree, and 40.7% worked in radiology. Mean KAP scores were 13.87 (standard deviation (SD) = 4.96, possible range = 0-20) for knowledge, 28.25 (SD = 4.35, possible range = 8-40) for attitude, and 31.67 (SD = 8.23, possible range = 10-50) for practice. Knowledge (r = 0.358; P < 0.001) and attitude positively correlated with practice (r = 0.489; P < 0.001). Multivariate logistic regression indicated that educational level, department affiliation, and job satisfaction were significant predictors of knowledge. Attitude was influenced by marital status, department, and years of experience, while practice was shaped by knowledge, attitude, departmental factors, and job satisfaction. Structural equation modelling showed that knowledge was directly affected by gender (β = -0.121; P = 0.009), workplace (β = -0.133; P = 0.004), department (β = -0.197; P < 0.001), employment status (β = -0.166; P < 0.001), and night shift frequency (β = 0.163; P < 0.001). Attitude was directly influenced by marriage (β = 0.124; P = 0.006) and job satisfaction (β = -0.528; P < 0.001). Practice was directly affected by knowledge (β = 0.389; P < 0.001), attitude (β = 0.533; P < 0.001), and gender (β = -0.092; P = 0.010). Additionally, gender (β = -0.051; P = 0.010) and marriage (β = 0.066; P = 0.007) had indirect effects on practice. Cardiovascular health care personnel exhibited suboptimal knowledge, positive attitudes, and relatively inactive practices regarding coronary CTA and AI-assisted diagnosis. Targeted educational efforts are needed to enhance knowledge and support the integration of AI into clinical workflows.

Topics

Health Knowledge, Attitudes, PracticeComputed Tomography AngiographyArtificial IntelligenceHealth PersonnelCoronary AngiographyAttitude of Health PersonnelJournal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.