Artificial intelligence in cardiac sarcoidosis: ECG, Echo, CPET and MRI.
Authors
Affiliations (3)
Affiliations (3)
- Royal Brompton and Harefield Hospitals, part of Guy's and St Thomas' NHS Foundation Trust.
- King's College London School of Cardiovascular Medicine and Sciences.
- National Heart and Lung Institute, Imperial College London, London, UK.
Abstract
Cardiac sarcoidosis is a form of inflammatory cardiomyopathy that varies in its clinical presentation. It is associated with significant clinical complications such as high-degree atrioventricular block, ventricular tachycardia, heart failure and sudden cardiac death. It is challenging to diagnose clinically, and its increasing detection rate may represent increasing awareness of the disease by clinicians as well as a rising incidence. Prompt diagnosis and risk stratification reduces morbidity and mortality from cardiac sarcoidosis. Noninvasive diagnostic modalities such as ECG, echocardiography, PET/computed tomography (PET/CT) and cardiac MRI (cMRI) are increasingly playing important roles in cardiac sarcoidosis diagnosis. Artificial intelligence driven applications are increasingly being applied to these diagnostic modalities to improve the detection of cardiac sarcoidosis. Review of the recent literature suggests artificial intelligence based algorithms in PET/CT and cMRIs can predict cardiac sarcoidosis as accurately as trained experts, however, there are few published studies on artificial intelligence based algorithms in ECG and echocardiography. The impressive advances in artificial intelligence have the potential to transform patient screening in cardiac sarcoidosis, aid prompt diagnosis and appropriate risk stratification and change clinical practice.