Sort by:
Page 68 of 2252246 results

Multimodal deep learning for enhanced breast cancer diagnosis on sonography.

Wei TR, Chang A, Kang Y, Patel M, Fang Y, Yan Y

pubmed logopapersJun 12 2025
This study introduces a novel multimodal deep learning model tailored for the differentiation of benign and malignant breast masses using dual-view breast ultrasound images (radial and anti-radial views) in conjunction with corresponding radiology reports. The proposed multimodal model architecture includes specialized image and text encoders for independent feature extraction, along with a transformation layer to align the multimodal features for the subsequent classification task. The model achieved an area of the curve of 85% and outperformed unimodal models with 6% and 8% in Youden index. Additionally, our multimodal model surpassed zero-shot predictions generated by prominent foundation models such as CLIP and MedCLIP. In direct comparison with classification results based on physician-assessed ratings, our model exhibited clear superiority, highlighting its practical significance in diagnostics. By integrating both image and text modalities, this study exemplifies the potential of multimodal deep learning in enhancing diagnostic performance, laying the foundation for developing robust and transparent AI-assisted solutions.

NeuroEmo: A neuroimaging-based fMRI dataset to extract temporal affective brain dynamics for Indian movie video clips stimuli using dynamic functional connectivity approach with graph convolution neural network (DFC-GCNN).

Abgeena A, Garg S, Goyal N, P C JR

pubmed logopapersJun 12 2025
FMRI, a non-invasive neuroimaging technique, can detect emotional brain activation patterns. It allows researchers to observe functional changes in the brain, making it a valuable tool for emotion recognition. For improved emotion recognition systems, it becomes crucial to understand the neural mechanisms behind emotional processing in the brain. There have been multiple studies across the world on the same, however, research on fMRI-based emotion recognition within the Indian population remains scarce, limiting the generalizability of existing models. To address this gap, a culturally relevant neuroimaging dataset has been created https://openneuro.org/datasets/ds005700 for identifying five emotional states i.e., calm, afraid, delighted, depressed and excited-in a diverse group of Indian participants. To ensure cultural relevance, emotional stimuli were derived from Bollywood movie clips. This study outlines the fMRI task design, experimental setup, data collection procedures, preprocessing steps, statistical analysis using the General Linear Model (GLM), and region-of-interest (ROI)-based dynamic functional connectivity (DFC) extraction using parcellation based on the Power et al. (2011) functional atlas. A supervised emotion classification model has been proposed using a Graph Convolutional Neural Network (GCNN), where graph structures were constructed from DFC matrices at varying thresholds. The DFC-GCNN model achieved an impressive 95% classification accuracy across 5-fold cross-validation, highlighting emotion-specific connectivity dynamics in key affective regions, including the amygdala, prefrontal cortex, and anterior insula. These findings emphasize the significance of temporal variability in emotional state classification. By introducing a culturally specific neuroimaging dataset and a GCNN-based emotion recognition framework, this research enhances the applicability of graph-based models for identifying region-wise connectivity patterns in fMRI data. It also offers novel insights into cross-cultural differences in emotional processing at the neural level. Furthermore, the high spatial and temporal resolution of the fMRI dataset provides a valuable resource for future studies in emotional neuroscience and related disciplines.

Accelerating Diffusion: Task-Optimized latent diffusion models for rapid CT denoising.

Jee J, Chang W, Kim E, Lee K

pubmed logopapersJun 12 2025
Computed tomography (CT) systems are indispensable for diagnostics but pose risks due to radiation exposure. Low-dose CT (LDCT) mitigates these risks but introduces noise and artifacts that compromise diagnostic accuracy. While deep learning methods, such as convolutional neural networks (CNNs) and generative adversarial networks (GANs), have been applied to LDCT denoising, challenges persist, including difficulties in preserving fine details and risks of model collapse. Recently, the Denoising Diffusion Probabilistic Model (DDPM) has addressed the limitations of traditional methods and demonstrated exceptional performance across various tasks. Despite these advancements, its high computational cost during training and extended sampling time significantly hinder practical clinical applications. Additionally, DDPM's reliance on random Gaussian noise can reduce optimization efficiency and performance in task-specific applications. To overcome these challenges, this study proposes a novel LDCT denoising framework that integrates the Latent Diffusion Model (LDM) with the Cold Diffusion Process. LDM reduces computational costs by conducting the diffusion process in a low-dimensional latent space while preserving critical image features. The Cold Diffusion Process replaces Gaussian noise with a CT denoising task-specific degradation approach, enabling efficient denoising with fewer time steps. Experimental results demonstrate that the proposed method outperforms DDPM in key metrics, including PSNR, SSIM, and RMSE, while achieving up to 2 × faster training and 14 × faster sampling. These advancements highlight the proposed framework's potential as an effective and practical solution for real-world clinical applications.

PiPViT: Patch-based Visual Interpretable Prototypes for Retinal Image Analysis

Marzieh Oghbaie, Teresa Araújo, Hrvoje Bogunović

arxiv logopreprintJun 12 2025
Background and Objective: Prototype-based methods improve interpretability by learning fine-grained part-prototypes; however, their visualization in the input pixel space is not always consistent with human-understandable biomarkers. In addition, well-known prototype-based approaches typically learn extremely granular prototypes that are less interpretable in medical imaging, where both the presence and extent of biomarkers and lesions are critical. Methods: To address these challenges, we propose PiPViT (Patch-based Visual Interpretable Prototypes), an inherently interpretable prototypical model for image recognition. Leveraging a vision transformer (ViT), PiPViT captures long-range dependencies among patches to learn robust, human-interpretable prototypes that approximate lesion extent only using image-level labels. Additionally, PiPViT benefits from contrastive learning and multi-resolution input processing, which enables effective localization of biomarkers across scales. Results: We evaluated PiPViT on retinal OCT image classification across four datasets, where it achieved competitive quantitative performance compared to state-of-the-art methods while delivering more meaningful explanations. Moreover, quantitative evaluation on a hold-out test set confirms that the learned prototypes are semantically and clinically relevant. We believe PiPViT can transparently explain its decisions and assist clinicians in understanding diagnostic outcomes. Github page: https://github.com/marziehoghbaie/PiPViT

Score-based Generative Diffusion Models to Synthesize Full-dose FDG Brain PET from MRI in Epilepsy Patients

Jiaqi Wu, Jiahong Ouyang, Farshad Moradi, Mohammad Mehdi Khalighi, Greg Zaharchuk

arxiv logopreprintJun 12 2025
Fluorodeoxyglucose (FDG) PET to evaluate patients with epilepsy is one of the most common applications for simultaneous PET/MRI, given the need to image both brain structure and metabolism, but is suboptimal due to the radiation dose in this young population. Little work has been done synthesizing diagnostic quality PET images from MRI data or MRI data with ultralow-dose PET using advanced generative AI methods, such as diffusion models, with attention to clinical evaluations tailored for the epilepsy population. Here we compared the performance of diffusion- and non-diffusion-based deep learning models for the MRI-to-PET image translation task for epilepsy imaging using simultaneous PET/MRI in 52 subjects (40 train/2 validate/10 hold-out test). We tested three different models: 2 score-based generative diffusion models (SGM-Karras Diffusion [SGM-KD] and SGM-variance preserving [SGM-VP]) and a Transformer-Unet. We report results on standard image processing metrics as well as clinically relevant metrics, including congruency measures (Congruence Index and Congruency Mean Absolute Error) that assess hemispheric metabolic asymmetry, which is a key part of the clinical analysis of these images. The SGM-KD produced the best qualitative and quantitative results when synthesizing PET purely from T1w and T2 FLAIR images with the least mean absolute error in whole-brain specific uptake value ratio (SUVR) and highest intraclass correlation coefficient. When 1% low-dose PET images are included in the inputs, all models improve significantly and are interchangeable for quantitative performance and visual quality. In summary, SGMs hold great potential for pure MRI-to-PET translation, while all 3 model types can synthesize full-dose FDG-PET accurately using MRI and ultralow-dose PET.

AI-based identification of patients who benefit from revascularization: a multicenter study

Zhang, W., Miller, R. J., Patel, K., Shanbhag, A., Liang, J., Lemley, M., Ramirez, G., Builoff, V., Yi, J., Zhou, J., Kavanagh, P., Acampa, W., Bateman, T. M., Di Carli, M. F., Dorbala, S., Einstein, A. J., Fish, M. B., Hauser, M. T., Ruddy, T., Kaufmann, P. A., Miller, E. J., Sharir, T., Martins, M., Halcox, J., Chareonthaitawee, P., Dey, D., Berman, D., Slomka, P.

medrxiv logopreprintJun 12 2025
Background and AimsRevascularization in stable coronary artery disease often relies on ischemia severity, but we introduce an AI-driven approach that uses clinical and imaging data to estimate individualized treatment effects and guide personalized decisions. MethodsUsing a large, international registry from 13 centers, we developed an AI model to estimate individual treatment effects by simulating outcomes under alternative therapeutic strategies. The model was trained on an internal cohort constructed using 1:1 propensity score matching to emulate randomized controlled trials (RCTs), creating balanced patient pairs in which only the treatment strategy--early revascularization (defined as any procedure within 90 days of MPI) versus medical therapy--differed. This design allowed the model to estimate individualized treatment effects, forming the basis for counterfactual reasoning at the patient level. We then derived the AI-REVASC score, which quantifies the potential benefit, for each patient, of early revascularization. The score was validated in the held-out testing cohort using Cox regression. ResultsOf 45,252 patients, 19,935 (44.1%) were female, median age 65 (IQR: 57-73). During a median follow-up of 3.6 years (IQR: 2.7-4.9), 4,323 (9.6%) experienced MI or death. The AI model identified a group (n=1,335, 5.9%) that benefits from early revascularization with a propensity-adjusted hazard ratio of 0.50 (95% CI: 0.25-1.00). Patients identified for early revascularization had higher prevalence of hypertension, diabetes, dyslipidemia, and lower LVEF. ConclusionsThis study pioneers a scalable, data-driven approach that emulates randomized trials using retrospective data. The AI-REVASC score enables precision revascularization decisions where guidelines and RCTs fall short. Graphical Abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=104 SRC="FIGDIR/small/25329295v1_ufig1.gif" ALT="Figure 1"> View larger version (31K): [email protected]@1df75d8org.highwire.dtl.DTLVardef@1b1ce68org.highwire.dtl.DTLVardef@663cdf_HPS_FORMAT_FIGEXP M_FIG C_FIG

A machine learning approach for personalized breast radiation dosimetry in CT: Integrating radiomics and deep neural networks.

Tzanis E, Stratakis J, Damilakis J

pubmed logopapersJun 11 2025
To develop a machine learning-based workflow for patient-specific breast radiation dosimetry in CT. Two hundred eighty-six chest CT examinations, with corresponding right and left breast contours, were retrospectively collected from the radiotherapy department at our institution to develop and validate breast segmentation U-Nets. Additionally, Monte Carlo simulations were performed for each CT scan to determine radiation doses to the breasts. The derived breast doses, along with predictors such as X-ray tube current and radiomic features, were then used to train deep neural networks (DNNs) for breast dose prediction. The breast segmentation models achieved a mean dice similarity coefficient of 0.92, with precision and sensitivity scores above 0.90 for both breasts, indicating high segmentation accuracy. The DNNs demonstrated close alignment with ground truth values, with mean predicted doses of 5.05 ± 0.50 mGy for the right breast and 5.06 ± 0.55 mGy for the left breast, compared to ground truth values of 5.03 ± 0.57 mGy and 5.02 ± 0.61 mGy, respectively. The mean absolute percentage errors were 4.01 % (range: 3.90 %-4.12 %) for the right breast and 4.82 % (range: 4.56 %-5.11 %) for the left breast. The mean inference time was 30.2 ± 4.3 s. Statistical analysis showed no significant differences between predicted and actual doses (p ≥ 0.07). This study presents an automated, machine learning-based workflow for breast radiation dosimetry in CT, integrating segmentation and dose prediction models. The models and code are available at: https://github.com/eltzanis/ML-based-Breast-Radiation-Dosimetry-in-CT.

Efficacy of a large language model in classifying branch-duct intraductal papillary mucinous neoplasms.

Sato M, Yasaka K, Abe S, Kurashima J, Asari Y, Kiryu S, Abe O

pubmed logopapersJun 11 2025
Appropriate categorization based on magnetic resonance imaging (MRI) findings is important for managing intraductal papillary mucinous neoplasms (IPMNs). In this study, a large language model (LLM) that classifies IPMNs based on MRI findings was developed, and its performance was compared with that of less experienced human readers. The medical image management and processing systems of our hospital were searched to identify MRI reports of branch-duct IPMNs (BD-IPMNs). They were assigned to the training, validation, and testing datasets in chronological order. The model was trained on the training dataset, and the best-performing model on the validation dataset was evaluated on the test dataset. Furthermore, two radiology residents (Readers 1 and 2) and an intern (Reader 3) manually sorted the reports in the test dataset. The accuracy, sensitivity, and time required for categorizing were compared between the model and readers. The accuracy of the fine-tuned LLM for the test dataset was 0.966, which was comparable to that of Readers 1 and 2 (0.931-0.972) and significantly better than that of Reader 3 (0.907). The fine-tuned LLM had an area under the receiver operating characteristic curve of 0.982 for the classification of cyst diameter ≥ 10 mm, which was significantly superior to that of Reader 3 (0.944). Furthermore, the fine-tuned LLM (25 s) completed the test dataset faster than the readers (1,887-2,646 s). The fine-tuned LLM classified BD-IPMNs based on MRI findings with comparable performance to that of radiology residents and significantly reduced the time required.

Identification of Atypical Scoliosis Patterns Using X-ray Images Based on Fine-Grained Techniques in Deep Learning.

Chen Y, He Z, Yang KG, Qin X, Lau AY, Liu Z, Lu N, Cheng JC, Lee WY, Chui EC, Qiu Y, Liu X, Chen X, Zhu Z

pubmed logopapersJun 11 2025
Study DesignRetrospective diagnostic study.ObjectivesTo develop a fine-grained classification model based on deep learning using X-ray images, to screen for scoliosis, and further to screen for atypical scoliosis patterns associated with Chiari Malformation type I (CMS).MethodsA total of 508 pairs of coronal and sagittal X-ray images from patients with CMS, adolescent idiopathic scoliosis (AIS), and normal controls (NC) were processed through construction of the ResNet-50 model, including the development of ResNet-50 Coronal, ResNet-50 Sagittal, ResNet-50 Dual, ResNet-50 Concat, and ResNet-50 Bilinear models. Evaluation metrics calculated included accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for both the scoliosis diagnosis system and the CMS diagnosis system, along with the generation of receiver operating characteristic (ROC) curves and heatmaps for CMS diagnosis.ResultsThe classification results for the scoliosis diagnosis system showed that the ResNet-50 Coronal model had the best overall performance. For the CMS diagnosis system, the ResNet-50 Coronal and ResNet-50 Dual models demonstrated optimal performance. Specifically, the ResNet-50 Dual model reached the diagnostic level of senior spine surgeons, and the ResNet-50 Coronal model even surpassed senior surgeons in specificity and PPV. The CMS heatmaps revealed that major classification weights were concentrated on features such as atypical curve types, significant lateral shift of scoliotic segments, longer affected segments, and severe trunk tilt.ConclusionsThe fine-grained classification model based on the ResNet-50 network can accurately screen for atypical scoliosis patterns associated with CMS, highlighting the importance of radiographic features such as atypical curve types in model classification.

Diagnostic accuracy of machine learning-based magnetic resonance imaging models in breast cancer classification: a systematic review and meta-analysis.

Zhang J, Wu Q, Lei P, Zhu X, Li B

pubmed logopapersJun 11 2025
This meta-analysis evaluates the diagnostic accuracy of machine learning (ML)-based magnetic resonance imaging (MRI) models in distinguishing benign from malignant breast lesions and explores factors influencing their performance. A systematic search of PubMed, Embase, Cochrane Library, Scopus, and Web of Science identified 12 eligible studies (from 3,739 records) up to August 2024. Data were extracted to calculate sensitivity, specificity, and area under the curve (AUC) using bivariate models in R 4.4.1. Study quality was assessed via QUADAS-2. Pooled sensitivity and specificity were 0.86 (95% CI: 0.82-0.90) and 0.82 (95% CI: 0.78-0.86), respectively, with an overall AUC of 0.90 (95% CI: 0.85-0.90). Diagnostic odds ratio (DOR) was 39.11 (95% CI: 25.04-53.17). Support vector machine (SVM) classifiers outperformed Naive Bayes, with higher sensitivity (0.88 vs. 0.86) and specificity (0.82 vs. 0.78). Heterogeneity was primarily attributed to MRI equipment (P = 0.037). ML-based MRI models demonstrate high diagnostic accuracy for breast cancer classification, with pooled sensitivity of 0.86 (95% CI: 0.82-0.90), specificity of 0.82 (95% CI: 0.78-0.86), and AUC of 0.90 (95% CI: 0.85-0.90). These results support their clinical utility as screening and diagnostic adjuncts, while highlighting the need for standardized protocols to improve generalizability.
Page 68 of 2252246 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.