Sort by:
Page 67 of 1601600 results

Comparing Artificial Intelligence and Traditional Regression Models in Lung Cancer Risk Prediction Using A Systematic Review and Meta-Analysis.

Leonard S, Patel MA, Zhou Z, Le H, Mondal P, Adams SJ

pubmed logopapersJun 1 2025
Accurately identifying individuals who are at high risk of lung cancer is critical to optimize lung cancer screening with low-dose CT (LDCT). We sought to compare the performance of traditional regression models and artificial intelligence (AI)-based models in predicting future lung cancer risk. A systematic review and meta-analysis were conducted with reporting according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched MEDLINE, Embase, Scopus, and the Cumulative Index to Nursing and Allied Health Literature databases for studies reporting the performance of AI or traditional regression models for predicting lung cancer risk. Two researchers screened articles, and a third researcher resolved conflicts. Model characteristics and predictive performance metrics were extracted. The quality of studies was assessed using the Prediction model Risk of Bias Assessment Tool. A meta-analysis assessed the discrimination performance of models, based on area under the receiver operating characteristic curve (AUC). One hundred forty studies met inclusion criteria and included 185 traditional and 64 AI-based models. Of these, 16 AI models and 65 traditional models have been externally validated. The pooled AUC of external validations of AI models was 0.82 (95% confidence interval [CI], 0.80-0.85), and the pooled AUC for traditional regression models was 0.73 (95% CI, 0.72-0.74). In a subgroup analysis, AI models that included LDCT had a pooled AUC of 0.85 (95% CI, 0.82-0.88). Overall risk of bias was high for both AI and traditional models. AI-based models, particularly those using imaging data, show promise for improving lung cancer risk prediction over traditional regression models. Future research should focus on prospective validation of AI models and direct comparisons with traditional methods in diverse populations.

CT-SDM: A Sampling Diffusion Model for Sparse-View CT Reconstruction Across Various Sampling Rates.

Yang L, Huang J, Yang G, Zhang D

pubmed logopapersJun 1 2025
Sparse views X-ray computed tomography has emerged as a contemporary technique to mitigate radiation dose. Because of the reduced number of projection views, traditional reconstruction methods can lead to severe artifacts. Recently, research studies utilizing deep learning methods has made promising progress in removing artifacts for Sparse-View Computed Tomography (SVCT). However, given the limitations on the generalization capability of deep learning models, current methods usually train models on fixed sampling rates, affecting the usability and flexibility of model deployment in real clinical settings. To address this issue, our study proposes a adaptive reconstruction method to achieve high-performance SVCT reconstruction at various sampling rate. Specifically, we design a novel imaging degradation operator in the proposed sampling diffusion model for SVCT (CT-SDM) to simulate the projection process in the sinogram domain. Thus, the CT-SDM can gradually add projection views to highly undersampled measurements to generalize the full-view sinograms. By choosing an appropriate starting point in diffusion inference, the proposed model can recover the full-view sinograms from various sampling rate with only one trained model. Experiments on several datasets have verified the effectiveness and robustness of our approach, demonstrating its superiority in reconstructing high-quality images from sparse-view CT scans across various sampling rates.

A Foundation Model for Lesion Segmentation on Brain MRI With Mixture of Modality Experts.

Zhang X, Ou N, Doga Basaran B, Visentin M, Qiao M, Gu R, Matthews PM, Liu Y, Ye C, Bai W

pubmed logopapersJun 1 2025
Brain lesion segmentation is crucial for neurological disease research and diagnosis. As different types of lesions exhibit distinct characteristics on different imaging modalities, segmentation methods are typically developed in a task-specific manner, where each segmentation model is tailored to a specific lesion type and modality. However, the use of task-specific models requires predetermination of the lesion type and imaging modality, which complicates their deployment in real-world scenarios. In this work, we propose a universal foundation model for brain lesion segmentation on magnetic resonance imaging (MRI), which can automatically segment different types of brain lesions given input of various MRI modalities. We develop a novel Mixture of Modality Experts (MoME) framework with multiple expert networks attending to different imaging modalities. A hierarchical gating network is proposed to combine the expert predictions and foster expertise collaboration. Moreover, to avoid the degeneration of each expert network, we introduce a curriculum learning strategy during training to preserve the specialisation of each expert. In addition to MoME, to handle the combination of multiple input modalities, we propose MoME+, which uses a soft dispatch network for input modality routing. We evaluated the proposed method on nine brain lesion datasets, encompassing five imaging modalities and eight lesion types. The results show that our model outperforms state-of-the-art universal models for brain lesion segmentation and achieves promising generalisation performance onto unseen datasets.

Score-Based Diffusion Models With Self-Supervised Learning for Accelerated 3D Multi-Contrast Cardiac MR Imaging.

Liu Y, Cui ZX, Qin S, Liu C, Zheng H, Wang H, Zhou Y, Liang D, Zhu Y

pubmed logopapersJun 1 2025
Long scan time significantly hinders the widespread applications of three-dimensional multi-contrast cardiac magnetic resonance (3D-MC-CMR) imaging. This study aims to accelerate 3D-MC-CMR acquisition by a novel method based on score-based diffusion models with self-supervised learning. Specifically, we first establish a mapping between the undersampled k-space measurements and the MR images, utilizing a self-supervised Bayesian reconstruction network. Secondly, we develop a joint score-based diffusion model on 3D-MC-CMR images to capture their inherent distribution. The 3D-MC-CMR images are finally reconstructed using the conditioned Langenvin Markov chain Monte Carlo sampling. This approach enables accurate reconstruction without fully sampled training data. Its performance was tested on the dataset acquired by a 3D joint myocardial $ \text {T}_{{1}}$ and $ \text {T}_{{1}\rho }$ mapping sequence. The $ \text {T}_{{1}}$ and $ \text {T}_{{1}\rho }$ maps were estimated via a dictionary matching method from the reconstructed images. Experimental results show that the proposed method outperforms traditional compressed sensing and existing self-supervised deep learning MRI reconstruction methods. It also achieves high quality $ \text {T}_{{1}}$ and $ \text {T}_{{1}\rho }$ parametric maps close to the reference maps, even at a high acceleration rate of 14.

Ultra-Sparse-View Cone-Beam CT Reconstruction-Based Strictly Structure-Preserved Deep Neural Network in Image-Guided Radiation Therapy.

Song Y, Zhang W, Wu T, Luo Y, Shi J, Yang X, Deng Z, Qi X, Li G, Bai S, Zhao J, Zhong R

pubmed logopapersJun 1 2025
Radiation therapy is regarded as the mainstay treatment for cancer in clinic. Kilovoltage cone-beam CT (CBCT) images have been acquired for most treatment sites as the clinical routine for image-guided radiation therapy (IGRT). However, repeated CBCT scanning brings extra irradiation dose to the patients and decreases clinical efficiency. Sparse CBCT scanning is a possible solution to the problems mentioned above but at the cost of inferior image quality. To decrease the extra dose while maintaining the CBCT quality, deep learning (DL) methods are widely adopted. In this study, planning CT was used as prior information, and the corresponding strictly structure-preserved CBCT was simulated based on the attenuation information from the planning CT. We developed a hyper-resolution ultra-sparse-view CBCT reconstruction model, known as the planning CT-based strictly-structure-preserved neural network (PSSP-NET), using a generative adversarial network (GAN). This model utilized clinical CBCT projections with extremely low sampling rates for the rapid reconstruction of high-quality CBCT images, and its clinical performance was evaluated in head-and-neck cancer patients. Our experiments demonstrated enhanced performance and improved reconstruction speed.

Adaptive Weighting Based Metal Artifact Reduction in CT Images.

Wang H, Wu Y, Wang Y, Wei D, Wu X, Ma J, Zheng Y

pubmed logopapersJun 1 2025
Against the metal artifact reduction (MAR) task in computed tomography (CT) imaging, most of the existing deep-learning-based approaches generally select a single Hounsfield unit (HU) window followed by a normalization operation to preprocess CT images. However, in practical clinical scenarios, different body tissues and organs are often inspected under varying window settings for good contrast. The methods trained on a fixed single window would lead to insufficient removal of metal artifacts when being transferred to deal with other windows. To alleviate this problem, few works have proposed to reconstruct the CT images under multiple-window configurations. Albeit achieving good reconstruction performance for different windows, they adopt to directly supervise each window learning in an equal weighting way based on the training set. To improve the learning flexibility and model generalizability, in this paper, we propose an adaptive weighting algorithm, called AdaW, for the multiple-window metal artifact reduction, which can be applied to different deep MAR network backbones. Specifically, we first formulate the multiple window learning task as a bi-level optimization problem. Then we derive an adaptive weighting optimization algorithm where the learning process for MAR under each window is automatically weighted via a learning-to-learn paradigm based on the training set and validation set. This rationality is finely substantiated through theoretical analysis. Based on different network backbones, experimental comparisons executed on five datasets with different body sites comprehensively validate the effectiveness of AdaW in helping improve the generalization performance as well as its good applicability. We will release the code at https://github.com/hongwang01/AdaW.

FedBCD: Federated Ultrasound Video and Image Joint Learning for Breast Cancer Diagnosis.

Deng T, Huang C, Cai M, Liu Y, Liu M, Lin J, Shi Z, Zhao B, Huang J, Liang C, Han G, Liu Z, Wang Y, Han C

pubmed logopapersJun 1 2025
Ultrasonography plays an essential role in breast cancer diagnosis. Current deep learning based studies train the models on either images or videos in a centralized learning manner, lacking consideration of joint benefits between two different modality models or the privacy issue of data centralization. In this study, we propose the first decentralized learning solution for joint learning with breast ultrasound video and image, called FedBCD. To enable the model to learn from images and videos simultaneously and seamlessly in client-level local training, we propose a Joint Ultrasound Video and Image Learning (JUVIL) model to bridge the dimension gap between video and image data by incorporating temporal and spatial adapters. The parameter-efficient design of JUVIL with trainable adapters and frozen backbone further reduces the computational cost and communication burden of federated learning, finally improving the overall efficiency. Moreover, considering conventional model-wise aggregation may lead to unstable federated training due to different modalities, data capacities in different clients, and different functionalities across layers. We further propose a Fisher information matrix (FIM) guided Layer-wise Aggregation method named FILA. By measuring layer-wise sensitivity with FIM, FILA assigns higher contributions to the clients with lower sensitivity, improving personalized performance during federated training. Extensive experiments on three image clients and one video client demonstrate the benefits of joint learning architecture, especially for the ones with small-scale data. FedBCD significantly outperforms nine federated learning methods on both video-based and image-based diagnoses, demonstrating the superiority and potential for clinical practice. Code is released at https://github.com/tianpeng-deng/FedBCD.

The Pivotal Role of Baseline LDCT for Lung Cancer Screening in the Era of Artificial Intelligence.

De Luca GR, Diciotti S, Mascalchi M

pubmed logopapersJun 1 2025
In this narrative review, we address the ongoing challenges of lung cancer (LC) screening using chest low-dose computerized tomography (LDCT) and explore the contributions of artificial intelligence (AI), in overcoming them. We focus on evaluating the initial (baseline) LDCT examination, which provides a wealth of information relevant to the screening participant's health. This includes the detection of large-size prevalent LC and small-size malignant nodules that are typically diagnosed as LCs upon growth in subsequent annual LDCT scans. Additionally, the baseline LDCT examination provides valuable information about smoking-related comorbidities, including cardiovascular disease, chronic obstructive pulmonary disease, and interstitial lung disease (ILD), by identifying relevant markers. Notably, these comorbidities, despite the slow progression of their markers, collectively exceed LC as ultimate causes of death at follow-up in LC screening participants. Computer-assisted diagnosis tools currently improve the reproducibility of radiologic readings and reduce the false negative rate of LDCT. Deep learning (DL) tools that analyze the radiomic features of lung nodules are being developed to distinguish between benign and malignant nodules. Furthermore, AI tools can predict the risk of LC in the years following a baseline LDCT. AI tools that analyze baseline LDCT examinations can also compute the risk of cardiovascular disease or death, paving the way for personalized screening interventions. Additionally, DL tools are available for assessing osteoporosis and ILD, which helps refine the individual's current and future health profile. The primary obstacles to AI integration into the LDCT screening pathway are the generalizability of performance and the explainability.

Knowledge-Aware Multisite Adaptive Graph Transformer for Brain Disorder Diagnosis.

Song X, Shu K, Yang P, Zhao C, Zhou F, Frangi AF, Xiao X, Dong L, Wang T, Wang S, Lei B

pubmed logopapersJun 1 2025
Brain disorder diagnosis via resting-state functional magnetic resonance imaging (rs-fMRI) is usually limited due to the complex imaging features and sample size. For brain disorder diagnosis, the graph convolutional network (GCN) has achieved remarkable success by capturing interactions between individuals and the population. However, there are mainly three limitations: 1) The previous GCN approaches consider the non-imaging information in edge construction but ignore the sensitivity differences of features to non-imaging information. 2) The previous GCN approaches solely focus on establishing interactions between subjects (i.e., individuals and the population), disregarding the essential relationship between features. 3) Multisite data increase the sample size to help classifier training, but the inter-site heterogeneity limits the performance to some extent. This paper proposes a knowledge-aware multisite adaptive graph Transformer to address the above problems. First, we evaluate the sensitivity of features to each piece of non-imaging information, and then construct feature-sensitive and feature-insensitive subgraphs. Second, after fusing the above subgraphs, we integrate a Transformer module to capture the intrinsic relationship between features. Third, we design a domain adaptive GCN using multiple loss function terms to relieve data heterogeneity and to produce the final classification results. Last, the proposed framework is validated on two brain disorder diagnostic tasks. Experimental results show that the proposed framework can achieve state-of-the-art performance.
Page 67 of 1601600 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.