Sort by:
Page 6 of 1091 results

Appropriateness of acute breast symptom recommendations provided by ChatGPT.

Byrd C, Kingsbury C, Niell B, Funaro K, Bhatt A, Weinfurtner RJ, Ataya D

pubmed logopapersJun 16 2025
We evaluated the accuracy of ChatGPT-3.5's responses to common questions regarding acute breast symptoms and explored whether using lay language, as opposed to medical language, affected the accuracy of the responses. Questions were formulated addressing acute breast conditions, informed by the American College of Radiology (ACR) Appropriateness Criteria (AC) and our clinical experience at a tertiary referral breast center. Of these, seven addressed the most common acute breast symptoms, nine addressed pregnancy-associated breast symptoms, and four addressed specific management and imaging recommendations for a palpable breast abnormality. Questions were submitted three times to ChatGPT-3.5 and all responses were assessed by five fellowship-trained breast radiologists. Evaluation criteria included clinical judgment and adherence to the ACR guidelines, with responses scored as: 1) "appropriate," 2) "inappropriate" if any response contained inappropriate information, or 3) "unreliable" if responses were inconsistent. A majority vote determined the appropriateness for each question. ChatGPT-3.5 generated responses were appropriate for 7/7 (100 %) questions regarding common acute breast symptoms when phrased both colloquially and using standard medical terminology. In contrast, ChatGPT-3.5 generated responses were appropriate for 3/9 (33 %) questions about pregnancy-associated breast symptoms and 3/4 (75 %) questions about management and imaging recommendations for a palpable breast abnormality. ChatGPT-3.5 can automate healthcare information related to appropriate management of acute breast symptoms when prompted with both standard medical terminology or lay phrasing of the questions. However, physician oversight remains critical given the presence of inappropriate recommendations for pregnancy associated breast symptoms and management of palpable abnormalities.

FairICP: identifying biases and increasing transparency at the point of care in post-implementation clinical decision support using inductive conformal prediction.

Sun X, Nakashima M, Nguyen C, Chen PH, Tang WHW, Kwon D, Chen D

pubmed logopapersJun 15 2025
Fairness concerns stemming from known and unknown biases in healthcare practices have raised questions about the trustworthiness of Artificial Intelligence (AI)-driven Clinical Decision Support Systems (CDSS). Studies have shown unforeseen performance disparities in subpopulations when applied to clinical settings different from training. Existing unfairness mitigation strategies often struggle with scalability and accessibility, while their pursuit of group-level prediction performance parity does not effectively translate into fairness at the point of care. This study introduces FairICP, a flexible and cost-effective post-implementation framework based on Inductive Conformal Prediction (ICP), to provide users with actionable knowledge of model uncertainty due to subpopulation level biases at the point of care. FairICP applies ICP to identify the model's scope of competence through group specific calibration, ensuring equitable prediction reliability by filtering predictions that fall within the trusted competence boundaries. We evaluated FairICP against four benchmarks on three medical imaging modalities: (1) Cardiac Magnetic Resonance Imaging (MRI), (2) Chest X-ray and (3) Dermatology Imaging, acquired from both private and large public datasets. Frameworks are assessed on prediction performance enhancement and unfairness mitigation capabilities. Compared to the baseline, FairICP improved prediction accuracy by 7.2% and reduced the accuracy gap between the privileged and unprivileged subpopulations by 2.2% on average across all three datasets. Our work provides a robust solution to promote trust and transparency in AI-CDSS, fostering equality and equity in healthcare for diverse patient populations. Such post-process methods are critical to enabling a robust framework for AI-CDSS implementation and monitoring for healthcare settings.

Artificial intelligence for age-related macular degeneration diagnosis in Australia: A Novel Qualitative Interview Study.

Ly A, Herse S, Williams MA, Stapleton F

pubmed logopapersJun 14 2025
Artificial intelligence (AI) systems for age-related macular degeneration (AMD) diagnosis abound but are not yet widely implemented. AI implementation is complex, requiring the involvement of multiple, diverse stakeholders including technology developers, clinicians, patients, health networks, public hospitals, private providers and payers. There is a pressing need to investigate how AI might be adopted to improve patient outcomes. The purpose of this first study of its kind was to use the AI translation extended version of the non-adoption, abandonment, scale-up, spread and sustainability of healthcare technologies framework to explore stakeholder experiences, attitudes, enablers, barriers and possible futures of digital diagnosis using AI for AMD and eyecare in Australia. Semi-structured, online interviews were conducted with 37 stakeholders (12 clinicians, 10 healthcare leaders, 8 patients and 7 developers) from September 2022 to March 2023. The interviews were audio-recorded, transcribed and analysed using directed and summative content analysis. Technological features influencing implementation were most frequently discussed, followed by the context or wider system, value proposition, adopters, organisations, the condition and finally embedding the adaptation. Patients preferred to focus on the condition, while healthcare leaders elaborated on organisation factors. Overall, stakeholders supported a portable, device-independent clinical decision support tool that could be integrated with existing diagnostic equipment and patient management systems. Opportunities for AI to drive new models of healthcare, patient education and outreach, and the importance of maintaining equity across population groups were consistently emphasised. This is the first investigation to report numerous, interacting perspectives on the adoption of digital diagnosis for AMD in Australia, incorporating an intentionally diverse stakeholder group and the patient voice. It provides a series of practical considerations for the implementation of AI and digital diagnosis into existing care for people with AMD.

Generalist Models in Medical Image Segmentation: A Survey and Performance Comparison with Task-Specific Approaches

Andrea Moglia, Matteo Leccardi, Matteo Cavicchioli, Alice Maccarini, Marco Marcon, Luca Mainardi, Pietro Cerveri

arxiv logopreprintJun 12 2025
Following the successful paradigm shift of large language models, leveraging pre-training on a massive corpus of data and fine-tuning on different downstream tasks, generalist models have made their foray into computer vision. The introduction of Segment Anything Model (SAM) set a milestone on segmentation of natural images, inspiring the design of a multitude of architectures for medical image segmentation. In this survey we offer a comprehensive and in-depth investigation on generalist models for medical image segmentation. We start with an introduction on the fundamentals concepts underpinning their development. Then, we provide a taxonomy on the different declinations of SAM in terms of zero-shot, few-shot, fine-tuning, adapters, on the recent SAM 2, on other innovative models trained on images alone, and others trained on both text and images. We thoroughly analyze their performances at the level of both primary research and best-in-literature, followed by a rigorous comparison with the state-of-the-art task-specific models. We emphasize the need to address challenges in terms of compliance with regulatory frameworks, privacy and security laws, budget, and trustworthy artificial intelligence (AI). Finally, we share our perspective on future directions concerning synthetic data, early fusion, lessons learnt from generalist models in natural language processing, agentic AI and physical AI, and clinical translation.

Patient perspectives on AI in radiology: Insights from the United Arab Emirates.

El-Sayed MZ, Rawashdeh M, Moossa A, Atfah M, Prajna B, Ali MA

pubmed logopapersJun 11 2025
Artificial intelligence (AI) enhances diagnostic accuracy, efficiency, and patient outcomes in radiology. Patient acceptance is essential for successful integration. This study examines patient perspectives on AI in radiology within the UAE, focusing on their knowledge, attitudes, and perceived barriers. Understanding these factors can address concerns, improve trust, and guide patient-centered AI implementation. The findings aim to support effective AI adoption in healthcare. A cross-sectional study involving 205 participants undergoing radiological imaging in the UAE. Data was collected through an online questionnaire, developed based on a literature review, and pre-tested for reliability and validity. Non-probability sampling methods, including convenience and snowball sampling, were employed. The questionnaire assessed participants' knowledge, attitudes, and perceived barriers regarding AI in radiology. Data was analyzed, and categorical variables were expressed as frequencies and percentages. Most participants (89.8 %) believed AI could improve diagnostic accuracy, and 87.8 % acknowledged its role in prioritizing urgent cases. However, only 22 % had direct experience with AI in radiology. While 81 % expressed comfort with AI-based technology, concerns about data security (80.5 %), lack of empathy in AI systems (82.9 %), and insufficient information about AI (85.8 %) were significant barriers. Additionally, (87.3 %) of participants were concerned about the cost of AI implementation. Despite these concerns, 86.3 % believed AI could improve the quality of radiological services, and 83.9 % were satisfied with its potential applications. UAE patients generally support AI in radiology, recognizing its potential for improved diagnostic accuracy. However, concerns about data security, empathy, and understanding of AI technologies necessitate improved patient education, transparent communication, and regulatory frameworks to foster trust and acceptance.

Automated Vessel Occlusion Software in Acute Ischemic Stroke: Pearls and Pitfalls.

Aziz YN, Sriwastwa A, Nael K, Harker P, Mistry EA, Khatri P, Chatterjee AR, Heit JJ, Jadhav A, Yedavalli V, Vagal AS

pubmed logopapersJun 9 2025
Software programs leveraging artificial intelligence to detect vessel occlusions are now widely available to aid in stroke triage. Given their proprietary use, there is a surprising lack of information regarding how the software works, who is using the software, and their performance in an unbiased real-world setting. In this educational review of automated vessel occlusion software, we discuss emerging evidence of their utility, underlying algorithms, real-world diagnostic performance, and limitations. The intended audience includes specialists in stroke care in neurology, emergency medicine, radiology, and neurosurgery. Practical tips for onboarding and utilization of this technology are provided based on the multidisciplinary experience of the authorship team.

Curriculum check, 2025-equipping radiology residents for AI challenges of tomorrow.

Venugopal VK, Kumar A, Tan MO, Szarf G

pubmed logopapersJun 9 2025
The exponential rise in the artificial intelligence (AI) tools for medical imaging is profoundly impacting the practice of radiology. With over 1000 FDA-cleared AI algorithms now approved for clinical use-many of them designed for radiologic tasks-the responsibility lies with training institutions to ensure that radiology residents are equipped not only to use AI systems, but to critically evaluate, monitor, respond to their output in a safe, ethical manner. This review proposes a comprehensive framework to integrate AI into radiology residency curricula, targeting both essential competencies required of all residents, optional advanced skills for those interested in research or AI development. Core educational strategies include structured didactic instruction, hands-on lab exposure to commercial AI tools, case-based discussions, simulation-based clinical pathways, teaching residents how to interpret model cards, regulatory documentation. Clinical examples such as stroke triage, Urinary tract calculi detection, AI-CAD in mammography, false-positive detection are used to anchor theory in practice. The article also addresses critical domains of AI governance: model transparency, ethical dilemmas, algorithmic bias, the role of residents in human-in-the-loop oversight systems. It outlines mentorship, faculty development strategies to build institutional readiness, proposes a roadmap to future-proof radiology education. This includes exposure to foundation models, vision-language systems, multi-agent workflows, global best practices in post-deployment AI monitoring. This pragmatic framework aims to serve as a guide for residency programs adapting to the next era of radiology practice.

Large Language Models in Medical Diagnostics: Scoping Review With Bibliometric Analysis.

Su H, Sun Y, Li R, Zhang A, Yang Y, Xiao F, Duan Z, Chen J, Hu Q, Yang T, Xu B, Zhang Q, Zhao J, Li Y, Li H

pubmed logopapersJun 9 2025
The integration of large language models (LLMs) into medical diagnostics has garnered substantial attention due to their potential to enhance diagnostic accuracy, streamline clinical workflows, and address health care disparities. However, the rapid evolution of LLM research necessitates a comprehensive synthesis of their applications, challenges, and future directions. This scoping review aimed to provide an overview of the current state of research regarding the use of LLMs in medical diagnostics. The study sought to answer four primary subquestions, as follows: (1) Which LLMs are commonly used? (2) How are LLMs assessed in diagnosis? (3) What is the current performance of LLMs in diagnosing diseases? (4) Which medical domains are investigating the application of LLMs? This scoping review was conducted according to the Joanna Briggs Institute Manual for Evidence Synthesis and adheres to the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews). Relevant literature was searched from the Web of Science, PubMed, Embase, IEEE Xplore, and ACM Digital Library databases from 2022 to 2025. Articles were screened and selected based on predefined inclusion and exclusion criteria. Bibliometric analysis was performed using VOSviewer to identify major research clusters and trends. Data extraction included details on LLM types, application domains, and performance metrics. The field is rapidly expanding, with a surge in publications after 2023. GPT-4 and its variants dominated research (70/95, 74% of studies), followed by GPT-3.5 (34/95, 36%). Key applications included disease classification (text or image-based), medical question answering, and diagnostic content generation. LLMs demonstrated high accuracy in specialties like radiology, psychiatry, and neurology but exhibited biases in race, gender, and cost predictions. Ethical concerns, including privacy risks and model hallucination, alongside regulatory fragmentation, were critical barriers to clinical adoption. LLMs hold transformative potential for medical diagnostics but require rigorous validation, bias mitigation, and multimodal integration to address real-world complexities. Future research should prioritize explainable artificial intelligence frameworks, specialty-specific optimization, and international regulatory harmonization to ensure equitable and safe clinical deployment.

Lack of children in public medical imaging data points to growing age bias in biomedical AI

Hua, S. B. Z., Heller, N., He, P., Towbin, A. J., Chen, I., Lu, A., Erdman, L.

medrxiv logopreprintJun 7 2025
Artificial intelligence (AI) is rapidly transforming healthcare, but its benefits are not reaching all patients equally. Children remain overlooked with only 17% of FDA-approved medical AI devices labeled for pediatric use. In this work, we demonstrate that this exclusion may stem from a fundamental data gap. Our systematic review of 181 public medical imaging datasets reveals that children represent just under 1% of available data, while the majority of machine learning imaging conference papers we surveyed utilized publicly available data for methods development. Much like systematic biases of other kinds in model development, past studies have demonstrated the manner in which pediatric representation in data used for models intended for the pediatric population is essential for model performance in that population. We add to these findings, showing that adult-trained chest radiograph models exhibit significant age bias when applied to pediatric populations, with higher false positive rates in younger children. This work underscores the urgent need for increased pediatric representation in publicly accessible medical datasets. We provide actionable recommendations for researchers, policymakers, and data curators to address this age equity gap and ensure AI benefits patients of all ages. 1-2 sentence summaryOur analysis reveals a critical healthcare age disparity: children represent less than 1% of public medical imaging datasets. This gap in representation leads to biased predictions across medical image foundation models, with the youngest patients facing the highest risk of misdiagnosis.

Current utilization and impact of AI LVO detection tools in acute stroke triage: a multicenter survey analysis.

Darkhabani Z, Ezzeldin R, Delora A, Kass-Hout O, Alderazi Y, Nguyen TN, El-Ghanem M, Anwoju T, Ali Z, Ezzeldin M

pubmed logopapersJun 7 2025
Artificial intelligence (AI) tools for large vessel occlusion (LVO) detection are increasingly used in acute stroke triage to expedite diagnosis and intervention. However, variability in access and workflow integration limits their potential impact. This study assessed current usage patterns, access disparities, and integration levels across U.S. stroke programs. Cross-sectional, web-based survey of 97 multidisciplinary stroke care providers from diverse institutions. Descriptive statistics summarized demographics, AI tool usage, access, and integration. Two-proportion Z-tests assessed differences across institutional types. Most respondents (97.9%) reported AI tool use, primarily Viz AI and Rapid AI, but only 62.1% consistently used them for triage prior to radiologist interpretation. Just 37.5% reported formal protocol integration, and 43.6% had designated personnel for AI alert response. Access varied significantly across departments, and in only 61.7% of programs did all relevant team members have access. Formal implementation of the AI detection tools did not differ based on the certification (z = -0.2; <i>p</i> = 0.4) or whether the program was academic or community-based (z =-0.3; <i>p</i> = 0.3). AI-enabled LVO detection tools have the potential to improve stroke care and patient outcomes by expediting workflows and reducing treatment delays. This survey effectively evaluated current utilization of these tools and revealed widespread adoption alongside significant variability in access, integration, and workflow standardization. Larger, more diverse samples are needed to validate these findings across different hospital types, and further prospective research is essential to determine how formal integration of AI tools can enhance stroke care delivery, reduce disparities, and improve clinical outcomes.
Page 6 of 1091 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.