Sort by:
Page 56 of 2252246 results

Integration of MRI radiomics and germline genetics to predict the IDH mutation status of gliomas.

Nakase T, Henderson GA, Barba T, Bareja R, Guerra G, Zhao Q, Francis SS, Gevaert O, Kachuri L

pubmed logopapersJun 16 2025
The molecular profiling of gliomas for isocitrate dehydrogenase (IDH) mutations currently relies on resected tumor samples, highlighting the need for non-invasive, preoperative biomarkers. We investigated the integration of glioma polygenic risk scores (PRS) and radiographic features for prediction of IDH mutation status. We used 256 radiomic features, a glioma PRS and demographic information in 158 glioma cases within elastic net and neural network models. The integration of glioma PRS with radiomics increased the area under the receiver operating characteristic curve (AUC) for distinguishing IDH-wildtype vs. IDH-mutant glioma from 0.83 to 0.88 (P<sub>ΔAUC</sub> = 6.9 × 10<sup>-5</sup>) in the elastic net model and from 0.91 to 0.92 (P<sub>ΔAUC</sub> = 0.32) in the neural network model. Incorporating age at diagnosis and sex further improved the classifiers (elastic net: AUC = 0.93, neural network: AUC = 0.93). Patients predicted to have IDH-mutant vs. IDH-wildtype tumors had significantly lower mortality risk (hazard ratio (HR) = 0.18, 95% CI: 0.08-0.40, P = 2.1 × 10<sup>-5</sup>), comparable to prognostic trajectories for biopsy-confirmed IDH status. The augmentation of imaging-based classifiers with genetic risk profiles may help delineate molecular subtypes and improve the timely, non-invasive clinical assessment of glioma patients.

Whole-lesion-aware network based on freehand ultrasound video for breast cancer assessment: a prospective multicenter study.

Han J, Gao Y, Huo L, Wang D, Xie X, Zhang R, Xiao M, Zhang N, Lei M, Wu Q, Ma L, Sun C, Wang X, Liu L, Cheng S, Tang B, Wang L, Zhu Q, Wang Y

pubmed logopapersJun 16 2025
The clinical application of artificial intelligence (AI) models based on breast ultrasound static images has been hindered in real-world workflows due to operator-dependence of standardized image acquisition and incomplete view of breast lesions on static images. To better exploit the real-time advantages of ultrasound and more conducive to clinical application, we proposed a whole-lesion-aware network based on freehand ultrasound video (WAUVE) scanning in an arbitrary direction for predicting overall breast cancer risk score. The WAUVE was developed using 2912 videos (2912 lesions) of 2771 patients retrospectively collected from May 2020 to August 2022 in two hospitals. We compared the diagnostic performance of WAUVE with static 2D-ResNet50 and dynamic TimeSformer models in the internal validation set. Subsequently, a dataset comprising 190 videos (190 lesions) from 175 patients prospectively collected from December 2022 to April 2023 in two other hospitals, was used as an independent external validation set. A reader study was conducted by four experienced radiologists on the external validation set. We compared the diagnostic performance of WAUVE with the four experienced radiologists and evaluated the auxiliary value of model for radiologists. The WAUVE demonstrated superior performance compared to the 2D-ResNet50 model, while similar to the TimeSformer model. In the external validation set, WAUVE achieved an area under the receiver operating characteristic curve (AUC) of 0.8998 (95% CI = 0.8529-0.9439), and showed a comparable diagnostic performance to that of four experienced radiologists in terms of sensitivity (97.39% vs. 98.48%, p = 0.36), specificity (49.33% vs. 50.00%, p = 0.92), and accuracy (78.42% vs.79.34%, p = 0.60). With the WAUVE model assistance, the average specificity of four experienced radiologists was improved by 6.67%, and higher consistency was achieved (from 0.807 to 0.838). The WAUVE based on non-standardized ultrasound scanning demonstrated excellent performance in breast cancer assessment which yielded outcomes similar to those of experienced radiologists, indicating the clinical application of the WAUVE model promising.

Imaging-Based AI for Predicting Lymphovascular Space Invasion in Cervical Cancer: Systematic Review and Meta-Analysis.

She L, Li Y, Wang H, Zhang J, Zhao Y, Cui J, Qiu L

pubmed logopapersJun 16 2025
The role of artificial intelligence (AI) in enhancing the accuracy of lymphovascular space invasion (LVSI) detection in cervical cancer remains debated. This meta-analysis aimed to evaluate the diagnostic accuracy of imaging-based AI for predicting LVSI in cervical cancer. We conducted a comprehensive literature search across multiple databases, including PubMed, Embase, and Web of Science, identifying studies published up to November 9, 2024. Studies were included if they evaluated the diagnostic performance of imaging-based AI models in detecting LVSI in cervical cancer. We used a bivariate random-effects model to calculate pooled sensitivity and specificity with corresponding 95% confidence intervals. Study heterogeneity was assessed using the I2 statistic. Of 403 studies identified, 16 studies (2514 patients) were included. For the interval validation set, the pooled sensitivity, specificity, and area under the curve (AUC) for detecting LVSI were 0.84 (95% CI 0.79-0.87), 0.78 (95% CI 0.75-0.81), and 0.87 (95% CI 0.84-0.90). For the external validation set, the pooled sensitivity, specificity, and AUC for detecting LVSI were 0.79 (95% CI 0.70-0.86), 0.76 (95% CI 0.67-0.83), and 0.84 (95% CI 0.81-0.87). Using the likelihood ratio test for subgroup analysis, deep learning demonstrated significantly higher sensitivity compared to machine learning (P=.01). Moreover, AI models based on positron emission tomography/computed tomography exhibited superior sensitivity relative to those based on magnetic resonance imaging (P=.01). Imaging-based AI, particularly deep learning algorithms, demonstrates promising diagnostic performance in predicting LVSI in cervical cancer. However, the limited external validation datasets and the retrospective nature of the research may introduce potential biases. These findings underscore AI's potential as an auxiliary diagnostic tool, necessitating further large-scale prospective validation.

Real-time cardiac cine MRI: A comparison of a diffusion probabilistic model with alternative state-of-the-art image reconstruction techniques for undersampled spiral acquisitions.

Schad O, Heidenreich JF, Petri N, Kleineisel J, Sauer S, Bley TA, Nordbeck P, Petritsch B, Wech T

pubmed logopapersJun 16 2025
Electrocardiogram (ECG)-gated cine imaging in breath-hold enables high-quality diagnostics in most patients but can be compromised by arrhythmia and inability to hold breath. Real-time cardiac MRI offers faster and robust exams without these limitations. To achieve sufficient acceleration, advanced reconstruction methods, which transfer data into high-quality images, are required. In this study, undersampled spiral balanced SSFP (bSSFP) real-time data in free-breathing were acquired at 1.5T in 16 healthy volunteers and five arrhythmic patients, with ECG-gated Cartesian cine in breath-hold serving as clinical reference. Image reconstructions were performed using a tailored and specifically trained score-based diffusion model, compared to a variational network and different compressed sensing approaches. The techniques were assessed using an expert reader study, scalar metric calculations, difference images against a segmented reference, and Bland-Altman analysis of cardiac functional parameters. In participants with irregular RR-cycles, spiral real-time acquisitions showed superior image quality compared to the clinical reference. Quantitative and qualitative metrics indicate enhanced image quality of the diffusion model in comparison to the alternative reconstruction methods, although improvements over the variational network were minor. Slightly higher ejection fractions for the real-time diffusion reconstructions were exhibited relative to the clinical references with a bias of 1.1 ± 5.7% for healthy subjects. The proposed real-time technique enables free-breathing acquisitions of spatio-temporal images with high quality, covering the entire heart in less than 1 min. Evaluation of ejection fraction using the ECG-gated reference can be vulnerable to arrhythmia and averaging effects, highlighting the need for real-time approaches. Prolonged inference times and stochastic variability of the diffusion reconstruction represent obstacles to overcome for clinical translation.

A Semi-supervised Ultrasound Image Segmentation Network Integrating Enhanced Mask Learning and Dynamic Temperature-controlled Self-distillation.

Xu L, Huang Y, Zhou H, Mao Q, Yin W

pubmed logopapersJun 16 2025
Ultrasound imaging is widely used in clinical practice due to its advantages of no radiation and real-time capability. However, its image quality is often degraded by speckle noise, low contrast, and blurred boundaries, which pose significant challenges for automatic segmentation. In recent years, deep learning methods have achieved notable progress in ultrasound image segmentation. Nonetheless, these methods typically require large-scale annotated datasets, incur high computational costs, and suffer from slow inference speeds, limiting their clinical applicability. To overcome these limitations, we propose EML-DMSD, a novel semi-supervised segmentation network that combines Enhanced Mask Learning (EML) and Dynamic Temperature-Controlled Multi-Scale Self-Distillation (DMSD). The EML module improves the model's robustness to noise and boundary ambiguity, while the DMSD module introduces a teacher-free, multi-scale self-distillation strategy with dynamic temperature adjustment to boost inference efficiency and reduce reliance on extensive resources. Experiments on multiple ultrasound benchmark datasets demonstrate that EML-DMSD achieves superior segmentation accuracy with efficient inference, highlighting its strong generalization ability and clinical potential.

Interpretable deep fuzzy network-aided detection of central lymph node metastasis status in papillary thyroid carcinoma.

Wang W, Ning Z, Zhang J, Zhang Y, Wang W

pubmed logopapersJun 16 2025
The non-invasive assessment of central lymph node metastasis (CLNM) in patients with papillary thyroid carcinoma (PTC) plays a crucial role in assisting treatment decision and prognosis planning. This study aims to use an interpretable deep fuzzy network guided by expert knowledge to predict the CLNM status of patients with PTC from ultrasound images. A total of 1019 PTC patients were enrolled in this study, comprising 465 CLNM patients and 554 non-CLNM patients. Pathological diagnosis served as the gold standard to determine metastasis status. Clinical and morphological features of thyroid were collected as expert knowledge to guide the deep fuzzy network in predicting CLNM status. The network consisted of a region of interest (ROI) segmentation module, a knowledge-aware feature extraction module, and a fuzzy prediction module. The network was trained on 652 patients, validated on 163 patients and tested on 204 patients. The model exhibited promising performance in predicting CLNM status, achieving the area under the receiver operating characteristic curve (AUC), accuracy, precision, sensitivity and specificity of 0.786 (95% CI 0.720-0.846), 0.745 (95% CI 0.681-0.799), 0.727 (95% CI 0.636-0.819), 0.696 (95% CI 0.594-0.789), and 0.786 (95% CI 0.712-0.864), respectively. In addition, the rules of the fuzzy system in the model are easy to understand and explain, and have good interpretability. The deep fuzzy network guided by expert knowledge predicted CLNM status of PTC patients with high accuracy and good interpretability, and may be considered as an effective tool to guide preoperative clinical decision-making.

Predicting mucosal healing in Crohn's disease: development of a deep-learning model based on intestinal ultrasound images.

Ma L, Chen Y, Fu X, Qin J, Luo Y, Gao Y, Li W, Xiao M, Cao Z, Shi J, Zhu Q, Guo C, Wu J

pubmed logopapersJun 16 2025
Predicting treatment response in Crohn's disease (CD) is essential for making an optimal therapeutic regimen, but relevant models are lacking. This study aimed to develop a deep learning model based on baseline intestinal ultrasound (IUS) images and clinical information to predict mucosal healing. Consecutive CD patients who underwent pretreatment IUS were retrospectively recruited at a tertiary hospital. A total of 1548 IUS images of longitudinal diseased bowel segments were collected and divided into a training cohort and a test cohort. A convolutional neural network model was developed to predict mucosal healing after one year of standardized treatment. The model's efficacy was validated using the five-fold internal cross-validation and further tested in the test cohort. A total of 190 patients (68.9% men, mean age 32.3 ± 14.1 years) were enrolled, consisting of 1038 IUS images of mucosal healing and 510 images of no mucosal healing. The mean area under the curve in the test cohort was 0.73 (95% CI: 0.68-0.78), with the mean sensitivity of 68.1% (95% CI: 60.5-77.4%), specificity of 69.5% (95% CI: 60.1-77.2%), positive prediction value of 80.0% (95% CI: 74.5-84.9%), negative prediction value of 54.8% (95% CI: 48.0-63.7%). Heat maps showing the deep-learning decision-making process revealed that information from the bowel wall, serous surface, and surrounding mesentery was mainly considered by the model. We developed a deep learning model based on IUS images to predict mucosal healing in CD with notable accuracy. Further validation and improvement of this model with more multi-center, real-world data are needed. Predicting treatment response in CD is essential to making an optimal therapeutic regimen. In this study, a deep-learning model using pretreatment ultrasound images and clinical information was generated to predict mucosal healing with an AUC of 0.73. Response to medication treatment is highly variable among patients with CD. High-resolution IUS images of the intestinal wall may hide significant characteristics for treatment response. A deep-learning model capable of predicting treatment response was generated using pretreatment IUS images.

Think deep in the tractography game: deep learning for tractography computing and analysis.

Zhang F, Théberge A, Jodoin PM, Descoteaux M, O'Donnell LJ

pubmed logopapersJun 16 2025
Tractography is a challenging process with complex rules, driving continuous algorithmic evolution to address its challenges. Meanwhile, deep learning has tackled similarly difficult tasks, such as mastering the Go board game and animating sophisticated robots. Given its transformative impact in these areas, deep learning has the potential to revolutionize tractography within the framework of existing rules. This work provides a brief summary of recent advances and challenges in deep learning-based tractography computing and analysis.

Artificial intelligence (AI) and CT in abdominal imaging: image reconstruction and beyond.

Pisuchpen N, Srinivas Rao S, Noda Y, Kongboonvijit S, Rezaei A, Kambadakone A

pubmed logopapersJun 16 2025
Computed tomography (CT) is a cornerstone of abdominal imaging, playing a vital role in accurate diagnosis, appropriate treatment planning, and disease monitoring. The evolution of artificial intelligence (AI) in imaging has introduced deep learning-based reconstruction (DLR) techniques that enhance image quality, reduce radiation dose, and improve workflow efficiency. Traditional image reconstruction methods, including filtered back projection (FBP) and iterative reconstruction (IR), have limitations such as high noise levels and artificial image texture. DLR overcomes these challenges by leveraging convolutional neural networks to generate high-fidelity images while preserving anatomical details. Recent advances in vendor-specific and vendor-agnostic DLR algorithms, such as TrueFidelity, AiCE, and Precise Image, have demonstrated significant improvements in contrast-to-noise ratio, lesion detection, and diagnostic confidence across various abdominal organs, including the liver, pancreas, and kidneys. Furthermore, AI extends beyond image reconstruction to applications such as low contrast lesion detection, quantitative imaging, and workflow optimization, augmenting radiologists' efficiency and diagnostic accuracy. However, challenges remain in clinical validation, standardization, and widespread adoption. This review explores the principles, advancements, and future directions of AI-driven CT image reconstruction and its expanding role in abdominal imaging.

Rate of brain aging associates with future executive function in Asian children and older adults.

Cheng SF, Yue WL, Ng KK, Qian X, Liu S, Tan TWK, Nguyen KN, Leong RLF, Hilal S, Cheng CY, Tan AP, Law EC, Gluckman PD, Chen CL, Chong YS, Meaney MJ, Chee MWL, Yeo BTT, Zhou JH

pubmed logopapersJun 16 2025
Brain age has emerged as a powerful tool to understand neuroanatomical aging and its link to health outcomes like cognition. However, there remains a lack of studies investigating the rate of brain aging and its relationship to cognition. Furthermore, most brain age models are trained and tested on cross-sectional data from primarily Caucasian, adult participants. It is thus unclear how well these models generalize to non-Caucasian participants, especially children. Here, we tested a previously published deep learning model on Singaporean elderly participants (55-88 years old) and children (4-11 years old). We found that the model directly generalized to the elderly participants, but model finetuning was necessary for children. After finetuning, we found that the rate of change in brain age gap was associated with future executive function performance in both elderly participants and children. We further found that lateral ventricles and frontal areas contributed to brain age prediction in elderly participants, while white matter and posterior brain regions were more important in predicting brain age of children. Taken together, our results suggest that there is potential for generalizing brain age models to diverse populations. Moreover, the longitudinal change in brain age gap reflects developing and aging processes in the brain, relating to future cognitive function.
Page 56 of 2252246 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.