Sort by:
Page 543 of 6276269 results

Yaşar Utku Alçalar, Mehmet Akçakaya

arxiv logopreprintMay 30 2025
Physics-driven deep learning (PD-DL) models have proven to be a powerful approach for improved reconstruction of rapid MRI scans. In order to train these models in scenarios where fully-sampled reference data is unavailable, self-supervised learning has gained prominence. However, its application at high acceleration rates frequently introduces artifacts, compromising image fidelity. To mitigate this shortcoming, we propose a novel way to train PD-DL networks via carefully-designed perturbations. In particular, we enhance the k-space masking idea of conventional self-supervised learning with a novel consistency term that assesses the model's ability to accurately predict the added perturbations in a sparse domain, leading to more reliable and artifact-free reconstructions. The results obtained from the fastMRI knee and brain datasets show that the proposed training strategy effectively reduces aliasing artifacts and mitigates noise amplification at high acceleration rates, outperforming state-of-the-art self-supervised methods both visually and quantitatively.

Alina Devkota, Annahita Amireskandari, Joel Palko, Shyam Thakkar, Donald Adjeroh, Xiajun Jiang, Binod Bhattarai, Prashnna K. Gyawali

arxiv logopreprintMay 30 2025
Gastrointestinal (GI) endoscopy is essential in identifying GI tract abnormalities in order to detect diseases in their early stages and improve patient outcomes. Although deep learning has shown success in supporting GI diagnostics and decision-making, these models require curated datasets with labels that are expensive to acquire. Foundation models offer a promising solution by learning general-purpose representations, which can be finetuned for specific tasks, overcoming data scarcity. Developing foundation models for medical imaging holds significant potential, but the sensitive and protected nature of medical data presents unique challenges. Foundation model training typically requires extensive datasets, and while hospitals generate large volumes of data, privacy restrictions prevent direct data sharing, making foundation model training infeasible in most scenarios. In this work, we propose a FL framework for training foundation models for gastroendoscopy imaging, enabling data to remain within local hospital environments while contributing to a shared model. We explore several established FL algorithms, assessing their suitability for training foundation models without relying on task-specific labels, conducting experiments in both homogeneous and heterogeneous settings. We evaluate the trained foundation model on three critical downstream tasks--classification, detection, and segmentation--and demonstrate that it achieves improved performance across all tasks, highlighting the effectiveness of our approach in a federated, privacy-preserving setting.

Sahashi Y, Vukadinovic M, Duffy G, Li D, Cheng S, Berman DS, Ouyang D, Kwan AC

pubmed logopapersMay 30 2025
Echocardiography is the most common modality for assessing cardiac structure and function. While cardiac magnetic resonance (CMR) imaging is less accessible, CMR can provide unique tissue characterization including late gadolinium enhancement (LGE), T1 and T2 mapping, and extracellular volume (ECV) which are associated with tissue fibrosis, infiltration, and inflammation. Deep learning has been shown to uncover findings not recognized by clinicians, however it is unknown whether CMR-based tissue characteristics can be derived from echocardiography videos using deep learning. To assess the performance of a deep learning model applied to echocardiography to detect CMR-specific parameters including LGE presence, and abnormal T1, T2 or ECV. In a retrospective single-center study, adult patients with CMRs and echocardiography studies within 30 days were included. A video-based convolutional neural network was trained on echocardiography videos to predict CMR-derived labels including LGE presence, and abnormal T1, T2 or ECV across echocardiography views. The model was also trained to predict presence/absence of wall motion abnormality (WMA) as a positive control for model function. The model performance was evaluated in a held-out test dataset not used for training. The study population included 1,453 adult patients (mean age 56±18 years, 42% female) with 2,556 paired echocardiography studies occurring at a median of 2 days after CMR (interquartile range 2 days prior to 6 days after). The model had high predictive capability for presence of WMA (AUC 0.873 [95%CI 0.816-0.922]) which was used for positive control. However, the model was unable to reliably detect the presence of LGE (AUC 0.699 [0.613-0.780]), abnormal native T1 (AUC 0.614 [0.500-0.715]), T2 0.553 [0.420-0.692], or ECV 0.564 [0.455-0.691]). Deep learning applied to echocardiography accurately identified CMR-based WMA, but was unable to predict tissue characteristics, suggesting that signal for these tissue characteristics may not be present within ultrasound videos, and that the use of CMR for tissue characterization remains essential within cardiology.

Tsuneta S, Aono S, Kimura R, Kwon J, Fujima N, Ishizaka K, Nishioka N, Yoneyama M, Kato F, Minowa K, Kudo K

pubmed logopapersMay 30 2025
To evaluate the effect of model-based deep-learning reconstruction (DLR) compared with that of compressed sensing-sensitivity encoding (CS) on cine cardiac magnetic resonance (CMR). Cine CMR images of 10 healthy volunteers were obtained with reduction factors of 2, 4, 6, and 8 and reconstructed using CS and DLR. The visual image quality scores assessed sharpness, image noise, and artifacts. Left-ventricular (LV) end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), and ejection fraction (EF) were manually measured. LV global circumferential strain (GCS) was automatically measured using the software. The precision of EDV, ESV, SV, EF, and GCS measurements was compared between CS and DLR using Bland-Altman analysis with full-sampling data as the gold standard. Compared with CS, DLR significantly improved image quality with reduction factors of 6 and 8. The precision of EDV and ESV with a reduction factor of 8, and GCS with reduction factors of 6 and 8 measurements improved with DLR compared with CS, whereas those of SV and EF measurements were not different between DLR and CS. The effect of DLR on cine CMR's image quality and precision in evaluating quantitative volume and strain was equal or superior to that of CS. DLR may replace CS for cine CMR.

Yaşar Utku Alçalar, Yu Cao, Mehmet Akçakaya

arxiv logopreprintMay 30 2025
Physics-driven artificial intelligence (PD-AI) reconstruction methods have emerged as the state-of-the-art for accelerating MRI scans, enabling higher spatial and temporal resolutions. However, the high resolution of these scans generates massive data volumes, leading to challenges in transmission, storage, and real-time processing. This is particularly pronounced in functional MRI, where hundreds of volumetric acquisitions further exacerbate these demands. Edge computing with FPGAs presents a promising solution for enabling PD-AI reconstruction near the MRI sensors, reducing data transfer and storage bottlenecks. However, this requires optimization of PD-AI models for hardware efficiency through quantization and bypassing traditional FFT-based approaches, which can be a limitation due to their computational demands. In this work, we propose a novel PD-AI computational MRI approach optimized for FPGA-based edge computing devices, leveraging 8-bit complex data quantization and eliminating redundant FFT/IFFT operations. Our results show that this strategy improves computational efficiency while maintaining reconstruction quality comparable to conventional PD-AI methods, and outperforms standard clinical methods. Our approach presents an opportunity for high-resolution MRI reconstruction on resource-constrained devices, highlighting its potential for real-world deployment.

Kasap ZA, Kurt B, Güner A, Özsağır E, Ercin ME

pubmed logopapersMay 30 2025
Atypia of Undetermined Significance (AUS), classified as Category III in the Bethesda Thyroid Cytopathology Reporting System, presents significant diagnostic challenges for clinicians. This study aims to develop a clinical decision support system that integrates structural equation modeling (SEM) and machine learning to predict malignancy in AUS thyroid nodules. The model integrates preoperative clinical data, ultrasonography (USG) findings, and cytopathological and morphometric variables. This retrospective cohort study was conducted between 2011 and 2019 at Karadeniz Technical University (KTU) Farabi Hospital. The dataset included 56 variables derived from 204 thyroid nodules diagnosed via ultrasound-guided fine-needle aspiration biopsy (FNAB) in 183 patients over 18 years. Logistic regression (LR) and SEM were used to identify risk factors for early thyroid cancer detection. Subsequently, machine learning algorithms-including Support Vector Machines (SVM), Naive Bayes (NB), and Decision Trees (DT) were used to construct decision support models. After feature selection with SEM, the SVM model achieved the highest performance, with an accuracy of 82 %, a specificity of 97 %, and an AUC value of 84 %. Additional models were developed for different scenarios, and their performance metrics were compared. Accurate preoperative prediction of malignancy in thyroid nodules is crucial for avoiding unnecessary surgeries. The proposed model supports more informed clinical decision-making by effectively identifying benign cases, thereby reducing surgical risk and improving patient care.

Li S, Yuan M, Dai X, Zhang C

pubmed logopapersMay 30 2025
Uncertainty estimation methods are essential for the application of artificial intelligence (AI) models in medical image segmentation, particularly in addressing reliability and feasibility challenges in clinical deployment. Despite their significance, the adoption of uncertainty estimation methods in clinical practice remains limited due to the lack of a comprehensive evaluation framework tailored to their clinical usage. To address this gap, a simulation of uncertainty-assisted clinical workflows is conducted, highlighting the roles of uncertainty in model selection, sample screening, and risk visualization. Furthermore, uncertainty evaluation is extended to pixel, sample, and model levels to enable a more thorough assessment. At the pixel level, the Uncertainty Confusion Metric (UCM) is proposed, utilizing density curves to improve robustness against variability in uncertainty distributions and to assess the ability of pixel uncertainty to identify potential errors. At the sample level, the Expected Segmentation Calibration Error (ESCE) is introduced to provide more accurate calibration aligned with Dice, enabling more effective identification of low-quality samples. At the model level, the Harmonic Dice (HDice) metric is developed to integrate uncertainty and accuracy, mitigating the influence of dataset biases and offering a more robust evaluation of model performance on unseen data. Using this systematic evaluation framework, five mainstream uncertainty estimation methods are compared on organ and tumor datasets, providing new insights into their clinical applicability. Extensive experimental analyses validated the practicality and effectiveness of the proposed metrics. This study offers clear guidance for selecting appropriate uncertainty estimation methods in clinical settings, facilitating their integration into clinical workflows and ultimately improving diagnostic efficiency and patient outcomes.

Anam Hashmi, Julia Dietlmeier, Kathleen M. Curran, Noel E. O'Connor

arxiv logopreprintMay 29 2025
Attention is a fundamental component of the human visual recognition system. The inclusion of attention in a convolutional neural network amplifies relevant visual features and suppresses the less important ones. Integrating attention mechanisms into convolutional neural networks enhances model performance and interpretability. Spatial and channel attention mechanisms have shown significant advantages across many downstream tasks in medical imaging. While existing attention modules have proven to be effective, their design often lacks a robust theoretical underpinning. In this study, we address this gap by proposing a non-linear attention architecture for cardiac MRI reconstruction and hypothesize that insights from ecological principles can guide the development of effective and efficient attention mechanisms. Specifically, we investigate a non-linear ecological difference equation that describes single-species population growth to devise a parameter-free attention module surpassing current state-of-the-art parameter-free methods.

Aswal S, Ahuja NJ, Mehra R

pubmed logopapersMay 29 2025
Due to imbalanced data values and high-dimensional features of lung cancer from CT scans images creates significant challenges in clinical research. The improper classification of these images leads towards higher complexity in classification process. These critical issues compromise the extraction of biomedical traits and also design incomplete classification of lung cancer. As the conventional approaches are partially successful in dealing with the complex nature of high-dimensional and imbalanced biomedical data for lung cancer classification. Thus, there is a crucial need to develop a robust classification technique which can address these major concerns in the classification of lung cancer images. In this paper, we propose a novel structural formation of the oblique decision tree (OBT) using a swarm intelligence technique, namely, the Binary Bat Swarm Algorithm (BBSA). The application of BBSA enables a competitive recognition rate to make structural reforms while building OBT. Such integration improves the ability of the machine learning swarm classifier (MLSC) to handle high-dimensional features and imbalanced biomedical datasets. The adaptive feature selection using BBSA allows for the exploration and selection of relevant features required for classification from ODT. The ODT classifier introduces flexibility in decision boundaries, which enables it to capture complex linkages between biomedical data. The proposed MLSC model effectively handles high-dimensional, imbalanced lung cancer datasets using TCGA_LUSC_2016 and TCGA_LUAD_2016 modalities, achieving superior precision, recall, F-measure, and execution efficiency. The experiments are conducted in Python to evaluate the performance metrics that consistently demonstrate enhanced classification accuracy and reduced misclassification rates compared to existing methods. The MLSC is assessed in terms of both qualitative and quantitative measurements to study the capability of the proposed MLSC in classifying the instances more effectively than the conventional state-of-the-art methods.
Page 543 of 6276269 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.