Enhancing Magnetic Resonance Imaging (MRI) Report Comprehension in Spinal Trauma: Readability Analysis of AI-Generated Explanations for Thoracolumbar Fractures.
Authors
Affiliations (2)
Affiliations (2)
- Division of Spine Surgery, Department of Orthopaedic Surgery, Scripps Clinic, 10710 N Torrey Pines Rd, La Jolla, CA, 92037, United States, 1 8585547988.
- Department of Radiology, St. Jude Children's Research Hospital, Memphis, TN, United States.
Abstract
Magnetic resonance imaging (MRI) reports are challenging for patients to interpret and may subject patients to unnecessary anxiety. The advent of advanced artificial intelligence (AI) large language models (LLMs), such as GPT-4o, hold promise for translating complex medical information into layman terms. This paper aims to evaluate the accuracy, helpfulness, and readability of GPT-4o in explaining MRI reports of patients with thoracolumbar fractures. MRI reports of 20 patients presenting with thoracic or lumbar vertebral body fractures were obtained. GPT-4o was prompted to explain the MRI report in layman's terms. The generated explanations were then presented to 7 board-certified spine surgeons for evaluation on the reports' helpfulness and accuracy. The MRI report text and GPT-4o explanations were then analyzed to grade the readability of the texts using the Flesch Readability Ease Score (FRES) and Flesch-Kincaid Grade Level (FKGL) Scale. The layman explanations provided by GPT-4o were found to be helpful by all surgeons in 17 cases, with 6 of 7 surgeons finding the information helpful in the remaining 3 cases. ChatGPT-generated layman reports were rated as "accurate" by all 7 surgeons in 11/20 cases (55%). In an additional 5/20 cases (25%), 6 out of 7 surgeons agreed on their accuracy. In the remaining 4/20 cases (20%), accuracy ratings varied, with 4 or 5 surgeons considering them accurate. Review of surgeon feedback on inaccuracies revealed that the radiology reports were often insufficiently detailed. The mean FRES score of the MRI reports was significantly lower than the GPT-4o explanations (32.15, SD 15.89 vs 53.9, SD 7.86; P<.001). The mean FKGL score of the MRI reports trended higher compared to the GPT-4o explanations (11th-12th grade vs 10th-11th grade level; P=.11). Overall helpfulness and readability ratings for AI-generated summaries of MRI reports were high, with few inaccuracies recorded. This study demonstrates the potential of GPT-4o to serve as a valuable tool for enhancing patient comprehension of MRI report findings.