Sort by:
Page 53 of 2352345 results

Enhanced Sarcopenia Detection in Nursing Home Residents Using Ultrasound Radiomics and Machine Learning.

Fu H, Luo S, Zhuo Y, Lian R, Chen X, Jiang W, Wang L, Yang M

pubmed logopapersAug 26 2025
Ultrasound only has low-to-moderate accuracy for sarcopenia. We aimed to investigate whether ultrasound radiomics combined with machine learning enhances sarcopenia diagnostic accuracy compared with conventional ultrasound parameters among older adults in long-term care. Diagnostic accuracy study. A total of 628 residents from 15 nursing homes in China. Sarcopenia diagnosis followed AWGS 2019 criteria. Ultrasound of thigh muscles (rectus femoris [ReF], vastus intermedius [VI], and quadriceps femoris [QF]) was performed. Conventional parameters (muscle thickness [MT], echo intensity [EI]) and radiomic features were extracted. Participants were split into training (70%)/validation (30%) sets. Conventional (muscle thickness + EI), radiomics, and integrated (MT, echo intensity, radiomics, basic clinical data including age, sex, and body mass index) models were built using 5 machine learning algorithms (including logistic regression [LR]). Performance was assessed in the validation set using the area under the receiver operating characteristic curve (AUC), calibration, and decision curve analysis (DCA). Sarcopenia prevalence was 61.9%. The LR algorithm consistently exhibited superior performance. The diagnostic accuracy of the ultrasound radiomic models was superior to that of the models based on conventional ultrasound parameters, regardless of muscle group. The integrated models further improved the accuracy, achieving AUCs (95% CIs) of 0.85 (0.79-0.91) for ReF, 0.81 (0.75-0.87) for VI, and 0.83 (0.77-0.90) for QF. In the validation set, the AUCs (95% CIs) for the conventional ultrasound models were 0.70 (0.63-0.78) for ReF, 0.73 (0.65-0.80) for VI, and 0.75 (0.68-0.82) for QF. The corresponding AUCs (95% CIs) for the radiomics models were 0.76 (0.69-0.83) for ReF, 0.76 (0.69-0.83) for VI, and 0.78 (0.71-0.85) for QF. The integrated models demonstrated good calibration and net benefit in DCA. Ultrasound radiomics, especially when integrated with conventional parameters and clinical data using LR, significantly improves sarcopenia diagnostic accuracy in nursing home residents. This accessible, noninvasive approach holds promise for enhancing sarcopenia screening and early detection in long-term care settings.

Benign-Malignant Classification of Pulmonary Nodules in CT Images Based on Fractal Spectrum Analysis

Ma, Y., Lei, S., Wang, B., Qiao, Y., Xing, F., Liang, T.

medrxiv logopreprintAug 26 2025
This study reveals that pulmonary nodules exhibit distinct multifractal characteristics, with malignant nodules demonstrating significantly higher fractal dimensions at larger scales. Based on this fundamental finding, an automatic benign-malignant classification method for pulmonary nodules in CT images was developed using fractal spectrum analysis. By computing continuous three-dimensional fractal dimensions on 121 nodule samples from the LIDC-IDRI database, a 201-dimensional fractal feature spectrum was extracted, and a simplified multilayer perceptron neural network (with only 6x6 minimal neural network nodes in the intermediate layers) was constructed for pulmonary nodule classification. Experimental results demonstrate that this method achieved 96.69% accuracy in distinguishing benign from malignant pulmonary nodules. The discovery of scale-dependent multifractal properties enables fractal spectrum analysis to effectively capture the complexity differences in multi-scale structures of malignant nodules, providing an efficient and interpretable AI-aided diagnostic method for early lung cancer diagnosis.

SWiFT: Soft-Mask Weight Fine-tuning for Bias Mitigation

Junyu Yan, Feng Chen, Yuyang Xue, Yuning Du, Konstantinos Vilouras, Sotirios A. Tsaftaris, Steven McDonagh

arxiv logopreprintAug 26 2025
Recent studies have shown that Machine Learning (ML) models can exhibit bias in real-world scenarios, posing significant challenges in ethically sensitive domains such as healthcare. Such bias can negatively affect model fairness, model generalization abilities and further risks amplifying social discrimination. There is a need to remove biases from trained models. Existing debiasing approaches often necessitate access to original training data and need extensive model retraining; they also typically exhibit trade-offs between model fairness and discriminative performance. To address these challenges, we propose Soft-Mask Weight Fine-Tuning (SWiFT), a debiasing framework that efficiently improves fairness while preserving discriminative performance with much less debiasing costs. Notably, SWiFT requires only a small external dataset and only a few epochs of model fine-tuning. The idea behind SWiFT is to first find the relative, and yet distinct, contributions of model parameters to both bias and predictive performance. Then, a two-step fine-tuning process updates each parameter with different gradient flows defined by its contribution. Extensive experiments with three bias sensitive attributes (gender, skin tone, and age) across four dermatological and two chest X-ray datasets demonstrate that SWiFT can consistently reduce model bias while achieving competitive or even superior diagnostic accuracy under common fairness and accuracy metrics, compared to the state-of-the-art. Specifically, we demonstrate improved model generalization ability as evidenced by superior performance on several out-of-distribution (OOD) datasets.

A Novel Model for Predicting Microsatellite Instability in Endometrial Cancer: Integrating Deep Learning-Pathomics and MRI-Based Radiomics.

Zhou L, Zheng L, Hong C, Hu Y, Wang Z, Guo X, Du Z, Feng Y, Mei J, Zhu Z, Zhao Z, Xu M, Lu C, Chen M, Ji J

pubmed logopapersAug 26 2025
To develop and validate a novel model based on multiparametric MRI (mpMRI) and whole slide images (WSIs) for predicting microsatellite instability (MSI) status in endometrial cancer (EC) patients. A total of 136 surgically confirmed EC patients were included in this retrospective study. Patients were randomly divided into a training set (96 patients) and a validation set (40 patients) in a 7:3 ratio. Deep learning with ResNet50 was used to extract deep-learning pathomics features, while Pyradiomics was applied to extract radiomics features specifically from sequences including T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and late arterial phase (AP). we developed a deep learning pathoradiomics model (DLPRM) by multilayer perceptron (MLP) based on radiomics features and pathomics features. Furthermore, we validated the DLPRM comprehensively, and compared it with two single-scale signatures-including the area under the receiver operating characteristic (ROC) curve, accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and F1-score. Finally, we employed shapley additive explanations (SHAP) to elucidate the mechanism of prediction model. After undergoing feature selection, a final set of nine radiomics features and 27 pathomics features were selected to construct the radiomics signature (RS) and the deep learning pathomics signature (DLPS). The DLPRM combining the RS and DLPS had favorable performance for the prediction of MSI status in the training set (AUC 0.960 [95% CI 0.936-0.984]), and in the validation set (AUC 0.917 [95% CI 0.824-1.000]). The AUCs of DLPS and RS ranged from 0.817 to 0.943 across the training and validation sets. The decision curve analysis indicated the DLPRM had relatively higher clinical net benefits. DLPRM can effectively predict MSI status in EC patients based on pretreatment pathoradiomics images with high accuracy and robustness, could provide a novel tool to assist clinicians in individualized management of EC.

MedVQA-TREE: A Multimodal Reasoning and Retrieval Framework for Sarcopenia Prediction

Pardis Moradbeiki, Nasser Ghadiri, Sayed Jalal Zahabi, Uffe Kock Wiil, Kristoffer Kittelmann Brockhattingen, Ali Ebrahimi

arxiv logopreprintAug 26 2025
Accurate sarcopenia diagnosis via ultrasound remains challenging due to subtle imaging cues, limited labeled data, and the absence of clinical context in most models. We propose MedVQA-TREE, a multimodal framework that integrates a hierarchical image interpretation module, a gated feature-level fusion mechanism, and a novel multi-hop, multi-query retrieval strategy. The vision module includes anatomical classification, region segmentation, and graph-based spatial reasoning to capture coarse, mid-level, and fine-grained structures. A gated fusion mechanism selectively integrates visual features with textual queries, while clinical knowledge is retrieved through a UMLS-guided pipeline accessing PubMed and a sarcopenia-specific external knowledge base. MedVQA-TREE was trained and evaluated on two public MedVQA datasets (VQA-RAD and PathVQA) and a custom sarcopenia ultrasound dataset. The model achieved up to 99% diagnostic accuracy and outperformed previous state-of-the-art methods by over 10%. These results underscore the benefit of combining structured visual understanding with guided knowledge retrieval for effective AI-assisted diagnosis in sarcopenia.

Optimizing meningioma grading with radiomics and deep features integration, attention mechanisms, and reproducibility analysis.

Albadr RJ, Sur D, Yadav A, Rekha MM, Jain B, Jayabalan K, Kubaev A, Taher WM, Alwan M, Jawad MJ, Al-Nuaimi AMA, Mohammadifard M, Farhood B, Akhavan-Sigari R

pubmed logopapersAug 26 2025
This study aims to develop a robust and clinically applicable framework for preoperative grading of meningiomas using T1-contrast-enhanced and T2-weighted MRI images. The approach integrates radiomic feature extraction, attention-guided deep learning models, and reproducibility assessment to achieve high diagnostic accuracy, model interpretability, and clinical reliability. We analyzed MRI scans from 2546 patients with histopathologically confirmed meningiomas (1560 low-grade, 986 high-grade). High-quality T1-contrast and T2-weighted images were preprocessed through harmonization, normalization, resizing, and augmentation. Tumor segmentation was performed using ITK-SNAP, and inter-rater reliability of radiomic features was evaluated using the intraclass correlation coefficient (ICC). Radiomic features were extracted via the SERA software, while deep features were derived from pre-trained models (ResNet50 and EfficientNet-B0), with attention mechanisms enhancing focus on tumor-relevant regions. Feature fusion and dimensionality reduction were conducted using PCA and LASSO. Ensemble models employing Random Forest, XGBoost, and LightGBM were implemented to optimize classification performance using both radiomic and deep features. Reproducibility analysis showed that 52% of radiomic features demonstrated excellent reliability (ICC > 0.90). Deep features from EfficientNet-B0 outperformed ResNet50, achieving AUCs of 94.12% (T1) and 93.17% (T2). Hybrid models combining radiomic and deep features further improved performance, with XGBoost reaching AUCs of 95.19% (T2) and 96.87% (T1). Ensemble models incorporating both deep architectures achieved the highest classification performance, with AUCs of 96.12% (T2) and 96.80% (T1), demonstrating superior robustness and accuracy. This work introduces a comprehensive and clinically meaningful AI framework that significantly enhances the preoperative grading of meningiomas. The model's high accuracy, interpretability, and reproducibility support its potential to inform surgical planning, reduce reliance on invasive diagnostics, and facilitate more personalized therapeutic decision-making in routine neuro-oncology practice. Not applicable.

Beyond the norm: Exploring the diverse facets of adrenal lesions.

Afif S, Mahmood Z, Zaheer A, Azadi JR

pubmed logopapersAug 26 2025
Radiological diagnosis of adrenal lesions can be challenging due to the overlap between benign and malignant imaging features. The primary challenge in managing adrenal lesions is to accurately identify and characterize them to minimize unnecessary diagnostic examinations and interventions. However, there are substantial risks of underdiagnosis and misdiagnosis. This review article provides a comprehensive overview of typical, atypical, and overlapping imaging features of both common and rare adrenal lesions and explores emerging applications of artificial intelligence powered analysis of CT and MRI, which could play a pivotal role in distinguishing benign from malignant and functioning from non-functioning adrenal lesions with significant diagnostic accuracy, thereby enhancing diagnostic confidence and potentially reducing unnecessary interventions.

Validation of an Automated CT Image Analysis in the Prevention of Urinary Stones with Hydration Trial.

Tasian GE, Maalouf NM, Harper JD, Sivalingam S, Logan J, Al-Khalidi HR, Lieske JC, Selman-Fermin A, Desai AC, Lai H, Kirkali Z, Scales CD, Fan Y

pubmed logopapersAug 26 2025
<b><i>Introduction and Objective:</i></b> Kidney stone growth and new stone formation are common clinical trial endpoints and are associated with future symptomatic events. To date, a manual review of CT scans has been required to assess stone growth and new stone formation, which is laborious. We validated the performance of a software algorithm that automatically identified, registered, and measured stones over longitudinal CT studies. <b><i>Methods:</i></b> We validated the performance of a pretrained machine learning algorithm to classify stone outcomes on longitudinal CT scan images at baseline and at the end of the 2-year follow-up period for 62 participants aged >18 years in the Prevention of Urinary Stones with Hydration (PUSH) randomized controlled trial. Stones were defined as an area of voxels with a minimum linear dimension of 2 mm that was higher in density than the mean plus 4 standard deviations of all nonnegative HU values within the kidney. The four outcomes assessed were: (1) growth of at least one existing stone by ≥2 mm, (2) formation of at least one new ≥2 mm stone, (3) no stone growth or new stone formation, and (4) loss of at least one stone. The accuracy of the algorithm was determined by comparing its outcomes to the gold standard of independent review of the CT images by at least two expert clinicians. <b><i>Results:</i></b> The algorithm correctly classified outcomes for 61 paired scans (98.4%). One pair that the algorithm incorrectly classified as stone growth was a new renal artery calcification on end-of-study CT. <b><i>Conclusions:</i></b> An automated image analysis method validated for the prospective PUSH trial was highly accurate for determining clinical outcomes of new stone formation, stone growth, stable stone size, and stone loss on longitudinal CT images. This method has the potential to improve the accuracy and efficiency of clinical care and endpoint determination for future clinical trials.

EffNetViTLoRA: An Efficient Hybrid Deep Learning Approach for Alzheimer's Disease Diagnosis

Mahdieh Behjat Khatooni, Mohsen Soryani

arxiv logopreprintAug 26 2025
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative disorders worldwide. As it progresses, it leads to the deterioration of cognitive functions. Since AD is irreversible, early diagnosis is crucial for managing its progression. Mild Cognitive Impairment (MCI) represents an intermediate stage between Cognitively Normal (CN) individuals and those with AD, and is considered a transitional phase from normal cognition to Alzheimer's disease. Diagnosing MCI is particularly challenging due to the subtle differences between adjacent diagnostic categories. In this study, we propose EffNetViTLoRA, a generalized end-to-end model for AD diagnosis using the whole Alzheimer's Disease Neuroimaging Initiative (ADNI) Magnetic Resonance Imaging (MRI) dataset. Our model integrates a Convolutional Neural Network (CNN) with a Vision Transformer (ViT) to capture both local and global features from MRI images. Unlike previous studies that rely on limited subsets of data, our approach is trained on the full T1-weighted MRI dataset from ADNI, resulting in a more robust and unbiased model. This comprehensive methodology enhances the model's clinical reliability. Furthermore, fine-tuning large pretrained models often yields suboptimal results when source and target dataset domains differ. To address this, we incorporate Low-Rank Adaptation (LoRA) to effectively adapt the pretrained ViT model to our target domain. This method enables efficient knowledge transfer and reduces the risk of overfitting. Our model achieves a classification accuracy of 92.52% and an F1-score of 92.76% across three diagnostic categories: AD, MCI, and CN for full ADNI dataset.

ESR Essentials: artificial intelligence in breast imaging-practice recommendations by the European Society of Breast Imaging.

Schiaffino S, Bernardi D, Healy N, Marino MA, Romeo V, Sechopoulos I, Mann RM, Pinker K

pubmed logopapersAug 26 2025
Artificial intelligence (AI) can enhance the diagnostic performance of breast cancer imaging and improve workflow optimization, potentially mitigating excessive radiologist workload and suboptimal diagnostic accuracy. AI can also boost imaging capabilities through individual risk prediction, molecular subtyping, and neoadjuvant therapy response predictions. Evidence demonstrates AI's potential across multiple modalities. The most robust data come from mammographic screening, where AI models improve diagnostic accuracy and optimize workflow, but rigorous post-market surveillance is required before any implementation strategy in this field. Commercial tools for digital breast tomosynthesis and ultrasound, potentially able to reduce interpretation time and improve accuracy, are also available, but post-implementation evaluation studies are likewise lacking. Besides basic tools for breast MRI with limited proven clinical benefit, AI applications for other modalities are not yet commercially available. Applications in contrast-enhanced mammography are still in the research stage, especially for radiomics-based molecular subtype classification. Applications of Large Language Models (LLMs) are in their infancy, and there are currently no clinical applications. Consequently, and despite their promise, all commercially available AI tools for breast imaging should currently still be regarded as techniques that, at best, aid radiologists in image evaluation. Their use is therefore optional, and the findings may always be overruled. KEY POINTS: AI systems improve diagnostic accuracy and efficiency of mammography screening, but long-term outcomes data are lacking. Commercial tools for digital breast tomosynthesis and ultrasound are available, but post-implementation evaluation studies are lacking. AI tools for breast imaging should still be regarded as a non-obligatory aid to radiologists for image interpretation.
Page 53 of 2352345 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.