Sort by:
Page 43 of 1621616 results

Biomarker extraction-based Alzheimer's disease stage detection using optimized deep learning approach.

Sampath R, Baskar M

pubmed logopapersAug 19 2025
BackgroundCognitive decline and memory loss in Alzheimer's disease (AD) progresses over time. Early diagnosis is crucial for initiating treatment that can slow progression and preserve daily functioning. However, challenges such as overfitting in prediction models, underutilized biomarker features, and noisy imaging data hinder the accuracy of current detection methods.ObjectiveThis study proposes a novel deep learning-based framework aimed at improving the identification of AD stages while addressing the limitations of existing diagnostic techniques.MethodsStructural MRI scans are employed as the primary diagnostic tool. To enhance image quality, contrast-limited adaptive histogram equalization and wavelet soft thresholding are applied for noise reduction. Biomarker segmentation focuses on ventricular and hippocampal abnormalities, optimized using a firefly algorithm. Dimensionality reduction is performed via Linear Discriminant Analysis to minimize overfitting. Finally, a Deep Belief Network optimized using the Cuckoo Search algorithm is employed for classification and feature learning.ResultsThe proposed framework demonstrates improved performance over existing methods, achieving a 0.66% increase in accuracy and a 0.0345% decrease in error rate for AD stage detection.ConclusionsThis deep learning strategy shows promise as an effective tool for early and accurate AD stage identification. Enhanced segmentation, dimensionality reduction, and classification contribute to its improved performance, offering a meaningful advancement in AD diagnostics.

Improving risk stratification of PI-RADS 3 + 1 lesions of the peripheral zone: expert lexicon of terms, multi-reader performance and contribution of artificial intelligence.

A Glemser P, Netzer N, H Ziener C, Wilhelm M, Hielscher T, Sun Zhang K, Görtz M, Schütz V, Stenzinger A, Hohenfellner M, Schlemmer HP, Bonekamp D

pubmed logopapersAug 19 2025
According to PI-RADS v2.1, peripheral PI-RADS 3 lesions are upgraded to PI-RADS 4 if dynamic contrast-enhanced MRI is positive (3+1 lesions), however those lesions are radiologically challenging. We aimed to define criteria by expert consensus and test applicability by other radiologists for sPC prediction of PI-RADS 3+1 lesions and determine their value in integrated regression models. From consecutive 3 Tesla MR examinations performed between 08/2016 to 12/2018 we identified 85 MRI examinations from 83 patients with a total of 94 PI-RADS 3+1 lesions in the official clinical report. Lesions were retrospectively assessed by expert consensus with construction of a newly devised feature catalogue which was utilized subsequently by two additional radiologists specialized in prostate MRI for independent lesion assessment. With reference to extended fused targeted and systematic TRUS/MRI-biopsy histopathological correlation, relevant catalogue features were identified by univariate analysis and put into context to typically available clinical features and automated AI image assessment utilizing lasso-penalized logistic regression models, also focusing on the contribution of DCE imaging (feature-based, bi- and multiparametric AI-enhanced and solely bi- and multiparametric AI-driven). The feature catalog enabled image-based lesional risk stratification for all readers. Expert consensus provided 3 significant features in univariate analysis (adj. p-value <0.05; most relevant feature T2w configuration: "irregular/microlobulated/spiculated", OR 9.0 (95%CI 2.3-44.3); adj. p-value: 0.016). These remained after lasso penalized regression based feature reduction, while the only selected clinical feature was prostate volume (OR<1), enabling nomogram construction. While DCE-derived consensus features did not enhance model performance (bootstrapped AUC), there was a trend for increased performance by including multiparametric AI, but not biparametric AI into models, both for combined and AI-only models. PI-RADS 3+1 lesions can be risk-stratified using lexicon terms and a key feature nomogram. AI potentially benefits more from DCE imaging than experienced prostate radiologists. Not applicable.

A fully automatic knee subregion segmentation network based on tissue segmentation and anatomical geometry.

Chen S, Zhong L, Zhang Z, Zhang X

pubmed logopapersAug 19 2025
Aiming at the difficulty of knee MRI bone and cartilage subregion segmentation caused by numerous subregions and unclear subregion boundary, a fully automatic knee subregion segmentation network based on tissue segmentation and anatomical geometry is proposed. Specifically, first, we use a transformer-based multilevel region and edge aggregation network to achieve precise segmentation of bone and cartilage tissue edges in knee MRI. Then, we designed a fibula detection module, which determines the medial and lateral of the knee by detecting the position of the fibula. Afterwards, a subregion segmentation module based on boundary information was designed, which divides bone and cartilage tissues into subregions by detecting the boundaries. In addition, in order to provide data support for the proposed model, fibula classification dataset and knee MRI bone and cartilage subregion dataset were established respectively. Testing on the fibula classification dataset we established, the proposed method achieved a detection accuracy of 1.000 in detecting the medial and lateral of the knee. On the knee MRI bone and cartilage subregion dataset we established, the proposed method attained an average dice score of 0.953 for bone subregions and 0.831 for cartilage subregions, which verifies the correctness of the proposed method.

Emerging modalities for neuroprognostication in neonatal encephalopathy: harnessing the potential of artificial intelligence.

Chawla V, Cizmeci MN, Sullivan KM, Gritz EC, Q Cardona V, Menkiti O, Natarajan G, Rao R, McAdams RM, Dizon ML

pubmed logopapersAug 19 2025
Neonatal Encephalopathy (NE) from presumed hypoxic-ischemic encephalopathy (pHIE) is a leading cause of morbidity and mortality in infants worldwide. Recent advancements in HIE research have introduced promising tools for improved screening of high-risk infants, time to diagnosis, and accuracy of assessment of neurologic injury to guide management and predict outcomes, some of which integrate artificial intelligence (AI) and machine learning (ML). This review begins with an overview of AI/ML before examining emerging prognostic approaches for predicting outcomes in pHIE. It explores various modalities including placental and fetal biomarkers, gene expression, electroencephalography, brain magnetic resonance imaging and other advanced neuroimaging techniques, clinical video assessment tools, and transcranial magnetic stimulation paired with electromyography. Each of these approaches may come to play a crucial role in predicting outcomes in pHIE. We also discuss the application of AI/ML to enhance these emerging prognostic tools. While further validation is needed for widespread clinical adoption, these tools and their multimodal integration hold the potential to better leverage neuroplasticity windows of affected infants. IMPACT: This article provides an overview of placental pathology, biomarkers, gene expression, electroencephalography, motor assessments, brain imaging, and transcranial magnetic stimulation tools for long-term neurodevelopmental outcome prediction following neonatal encephalopathy, that lend themselves to augmentation by artificial intelligence/machine learning (AI/ML). Emerging AI/ML tools may create opportunities for enhanced prognostication through multimodal analyses.

Comparing Conditional Diffusion Models for Synthesizing Contrast-Enhanced Breast MRI from Pre-Contrast Images

Sebastian Ibarra, Javier del Riego, Alessandro Catanese, Julian Cuba, Julian Cardona, Nataly Leon, Jonathan Infante, Karim Lekadir, Oliver Diaz, Richard Osuala

arxiv logopreprintAug 19 2025
Dynamic contrast-enhanced (DCE) MRI is essential for breast cancer diagnosis and treatment. However, its reliance on contrast agents introduces safety concerns, contraindications, increased cost, and workflow complexity. To this end, we present pre-contrast conditioned denoising diffusion probabilistic models to synthesize DCE-MRI, introducing, evaluating, and comparing a total of 22 generative model variants in both single-breast and full breast settings. Towards enhancing lesion fidelity, we introduce both tumor-aware loss functions and explicit tumor segmentation mask conditioning. Using a public multicenter dataset and comparing to respective pre-contrast baselines, we observe that subtraction image-based models consistently outperform post-contrast-based models across five complementary evaluation metrics. Apart from assessing the entire image, we also separately evaluate the region of interest, where both tumor-aware losses and segmentation mask inputs improve evaluation metrics. The latter notably enhance qualitative results capturing contrast uptake, albeit assuming access to tumor localization inputs that are not guaranteed to be available in screening settings. A reader study involving 2 radiologists and 4 MRI technologists confirms the high realism of the synthetic images, indicating an emerging clinical potential of generative contrast-enhancement. We share our codebase at https://github.com/sebastibar/conditional-diffusion-breast-MRI.

A Systematic Study of Deep Learning Models and xAI Methods for Region-of-Interest Detection in MRI Scans

Justin Yiu, Kushank Arora, Daniel Steinberg, Rohit Ghiya

arxiv logopreprintAug 19 2025
Magnetic Resonance Imaging (MRI) is an essential diagnostic tool for assessing knee injuries. However, manual interpretation of MRI slices remains time-consuming and prone to inter-observer variability. This study presents a systematic evaluation of various deep learning architectures combined with explainable AI (xAI) techniques for automated region of interest (ROI) detection in knee MRI scans. We investigate both supervised and self-supervised approaches, including ResNet50, InceptionV3, Vision Transformers (ViT), and multiple U-Net variants augmented with multi-layer perceptron (MLP) classifiers. To enhance interpretability and clinical relevance, we integrate xAI methods such as Grad-CAM and Saliency Maps. Model performance is assessed using AUC for classification and PSNR/SSIM for reconstruction quality, along with qualitative ROI visualizations. Our results demonstrate that ResNet50 consistently excels in classification and ROI identification, outperforming transformer-based models under the constraints of the MRNet dataset. While hybrid U-Net + MLP approaches show potential for leveraging spatial features in reconstruction and interpretability, their classification performance remains lower. Grad-CAM consistently provided the most clinically meaningful explanations across architectures. Overall, CNN-based transfer learning emerges as the most effective approach for this dataset, while future work with larger-scale pretraining may better unlock the potential of transformer models.

Latent Interpolation Learning Using Diffusion Models for Cardiac Volume Reconstruction

Niklas Bubeck, Suprosanna Shit, Chen Chen, Can Zhao, Pengfei Guo, Dong Yang, Georg Zitzlsberger, Daguang Xu, Bernhard Kainz, Daniel Rueckert, Jiazhen Pan

arxiv logopreprintAug 19 2025
Cardiac Magnetic Resonance (CMR) imaging is a critical tool for diagnosing and managing cardiovascular disease, yet its utility is often limited by the sparse acquisition of 2D short-axis slices, resulting in incomplete volumetric information. Accurate 3D reconstruction from these sparse slices is essential for comprehensive cardiac assessment, but existing methods face challenges, including reliance on predefined interpolation schemes (e.g., linear or spherical), computational inefficiency, and dependence on additional semantic inputs such as segmentation labels or motion data. To address these limitations, we propose a novel \textbf{Ca}rdiac \textbf{L}atent \textbf{I}nterpolation \textbf{D}iffusion (CaLID) framework that introduces three key innovations. First, we present a data-driven interpolation scheme based on diffusion models, which can capture complex, non-linear relationships between sparse slices and improves reconstruction accuracy. Second, we design a computationally efficient method that operates in the latent space and speeds up 3D whole-heart upsampling time by a factor of 24, reducing computational overhead compared to previous methods. Third, with only sparse 2D CMR images as input, our method achieves SOTA performance against baseline methods, eliminating the need for auxiliary input such as morphological guidance, thus simplifying workflows. We further extend our method to 2D+T data, enabling the effective modeling of spatiotemporal dynamics and ensuring temporal coherence. Extensive volumetric evaluations and downstream segmentation tasks demonstrate that CaLID achieves superior reconstruction quality and efficiency. By addressing the fundamental limitations of existing approaches, our framework advances the state of the art for spatio and spatiotemporal whole-heart reconstruction, offering a robust and clinically practical solution for cardiovascular imaging.

Automated surgical planning with nnU-Net: delineation of the anatomy in hepatobiliary phase MRI

Karin A. Olthof, Matteo Fusagli, Bianca Güttner, Tiziano Natali, Bram Westerink, Stefanie Speidel, Theo J. M. Ruers, Koert F. D. Kuhlmann, Andrey Zhylka

arxiv logopreprintAug 19 2025
Background: The aim of this study was to develop and evaluate a deep learning-based automated segmentation method for hepatic anatomy (i.e., parenchyma, tumors, portal vein, hepatic vein and biliary tree) from the hepatobiliary phase of gadoxetic acid-enhanced MRI. This method should ease the clinical workflow of preoperative planning. Methods: Manual segmentation was performed on hepatobiliary phase MRI scans from 90 consecutive patients who underwent liver surgery between January 2020 and October 2023. A deep learning network (nnU-Net v1) was trained on 72 patients with an extra focus on thin structures and topography preservation. Performance was evaluated on an 18-patient test set by comparing automated and manual segmentations using Dice similarity coefficient (DSC). Following clinical integration, 10 segmentations (assessment dataset) were generated using the network and manually refined for clinical use to quantify required adjustments using DSC. Results: In the test set, DSCs were 0.97+/-0.01 for liver parenchyma, 0.80+/-0.04 for hepatic vein, 0.79+/-0.07 for biliary tree, 0.77+/-0.17 for tumors, and 0.74+/-0.06 for portal vein. Average tumor detection rate was 76.6+/-24.1%, with a median of one false-positive per patient. The assessment dataset showed minor adjustments were required for clinical use of the 3D models, with high DSCs for parenchyma (1.00+/-0.00), portal vein (0.98+/-0.01) and hepatic vein (0.95+/-0.07). Tumor segmentation exhibited greater variability (DSC 0.80+/-0.27). During prospective clinical use, the model detected three additional tumors initially missed by radiologists. Conclusions: The proposed nnU-Net-based segmentation method enables accurate and automated delineation of hepatic anatomy. This enables 3D planning to be applied efficiently as a standard-of-care for every patient undergoing liver surgery.

Longitudinal CE-MRI-based Siamese network with machine learning to predict tumor response in HCC after DEB-TACE.

Wei N, Mathy RM, Chang DH, Mayer P, Liermann J, Springfeld C, Dill MT, Longerich T, Lurje G, Kauczor HU, Wielpütz MO, Öcal O

pubmed logopapersAug 19 2025
Accurate prediction of tumor response after drug-eluting beads transarterial chemoembolization (DEB-TACE) remains challenging in hepatocellular carcinoma (HCC), given tumor heterogeneity and dynamic changes over time. Existing prediction models based on single timepoint imaging do not capture dynamic treatment-induced changes. This study aims to develop and validate a predictive model that integrates deep learning and machine learning algorithms on longitudinal contrast-enhanced MRI (CE-MRI) to predict treatment response in HCC patients undergoing DEB-TACE. This retrospective study included 202 HCC patients treated with DEB-TACE from 2004 to 2023, divided into a training cohort (<i>n</i> = 141) and validation cohort (<i>n</i> = 61). Radiomics and deep learning features were extracted from standardized longitudinal CE-MRI to capture dynamic tumor changes. Feature selection involved correlation analysis, minimum redundancy maximum relevance, and least absolute shrinkage and selection operator regression. The patients were categorized into two groups: the objective response group (<i>n</i> = 123, 60.9%; complete response = 35, 28.5%; partial response = 88, 71.5%) and the non-response group (<i>n</i> = 79, 39.1%; stable disease = 62, 78.5%; progressive disease = 17, 21.5%). Predictive models were constructed using radiomics, deep learning, and integrated features. The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of the models. We retrospectively evaluated 202 patients (62.67 ± 9.25 years old) with HCC treated after DEB-TACE. A total of 7,182 radiomics features and 4,096 deep learning features were extracted from the longitudinal CE-MRI images. The integrated model was developed using 13 quantitative radiomics features and 4 deep learning features and demonstrated acceptable and robust performance with an receiver operating characteristic curve (AUC) of 0.941 (95%CI: 0.893–0.989) in the training cohort, and AUC of 0.925 (95%CI: 0.850–0.998) with accuracy of 86.9%, sensitivity of 83.7%, as well as specificity of 94.4% in the validation set. This study presents a predictive model based on longitudinal CE-MRI data to estimate tumor response to DEB-TACE in HCC patients. By capturing tumor dynamics and integrating radiomics features with deep learning features, the model has the potential to guide individualized treatment strategies and inform clinical decision-making regarding patient management. The online version contains supplementary material available at 10.1186/s40644-025-00926-5.

Latent Interpolation Learning Using Diffusion Models for Cardiac Volume Reconstruction

Niklas Bubeck, Suprosanna Shit, Chen Chen, Can Zhao, Pengfei Guo, Dong Yang, Georg Zitzlsberger, Daguang Xu, Bernhard Kainz, Daniel Rueckert, Jiazhen Pan

arxiv logopreprintAug 19 2025
Cardiac Magnetic Resonance (CMR) imaging is a critical tool for diagnosing and managing cardiovascular disease, yet its utility is often limited by the sparse acquisition of 2D short-axis slices, resulting in incomplete volumetric information. Accurate 3D reconstruction from these sparse slices is essential for comprehensive cardiac assessment, but existing methods face challenges, including reliance on predefined interpolation schemes (e.g., linear or spherical), computational inefficiency, and dependence on additional semantic inputs such as segmentation labels or motion data. To address these limitations, we propose a novel Cardiac Latent Interpolation Diffusion (CaLID) framework that introduces three key innovations. First, we present a data-driven interpolation scheme based on diffusion models, which can capture complex, non-linear relationships between sparse slices and improves reconstruction accuracy. Second, we design a computationally efficient method that operates in the latent space and speeds up 3D whole-heart upsampling time by a factor of 24, reducing computational overhead compared to previous methods. Third, with only sparse 2D CMR images as input, our method achieves SOTA performance against baseline methods, eliminating the need for auxiliary input such as morphological guidance, thus simplifying workflows. We further extend our method to 2D+T data, enabling the effective modeling of spatiotemporal dynamics and ensuring temporal coherence. Extensive volumetric evaluations and downstream segmentation tasks demonstrate that CaLID achieves superior reconstruction quality and efficiency. By addressing the fundamental limitations of existing approaches, our framework advances the state of the art for spatio and spatiotemporal whole-heart reconstruction, offering a robust and clinically practical solution for cardiovascular imaging.
Page 43 of 1621616 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.